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Joint Learning in the Spatio-Temporal and Frequency
Domains for Skeleton-Based Action Recognition

Guyue Hu , Student Member, IEEE, Bo Cui, and Shan Yu

Abstract—Benefiting from its succinctness and robustness,
skeleton-based action recognition has recently attracted
much attention. Most existing methods utilize local networks
(e.g. recurrent network, convolutional network, and graph
convolutional network) to extract spatio-temporal dynamics
hierarchically. As a consequence, the local and non-local
dependencies, which contain more details and semantics
respectively, are asynchronously captured in different level of
layers. Moreover, existing methods are limited to the spatio-
temporal domain and ignore information in the frequency
domain. To better extract synchronous detailed and semantic
information from multi-domains, we propose a residual frequency
attention (rFA) block to focus on discriminative patterns in the
frequency domain, and a synchronous local and non-local (SLnL)
block to simultaneously capture the details and semantics in the
spatio-temporal domain. In addition, to optimize the whole learning
processes of the multi-branch network, we put it under a pseudo
multi-task learning paradigm. During training, 1) a soft-margin
focal loss (SMFL) is proposed to optimize the intra-branch
separated learning process, which can automatically conduct
data selection and encourage intrinsic margins in classifiers; 2)
A mutual learning policy is also proposed to further facilitate
the inter-branch collaborative learning process. Eventually, our
approach achieves the state-of-the-art performance on several
large-scale datasets for skeleton-based action recognition.

Index Terms—Action recognition, frequency attention,
synchronous local and non-local learning, soft-margin focal
loss, multi-task learning.
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I. INTRODUCTION

HUMAN action recognition is an active topic in the fields of
computer vision and multimedia, which is widely applied

in video understanding, intelligent surveillance, and human-
computer interaction, etc. Human actions can be represented
by various of media modalities including RGB video, optical
flow, depth, and skeleton [1]–[7]. Due to its succinctness of
representation and robustness to variations of viewpoints, ap-
pearances and surroundings [8], [9], the skeleton-based human
action recognition has recently attracted increasing attention.
In this paper, we focus on recognizing human actions from the
skeleton-based sequence.

Most of previous works treat skeletal actions as sequences and
pseudo-images, then apply Recurrent Neural Networks (RNN)
[8], [10], [11] and Convolutional Neural Networks (CNN) [12],
[13] to model the temporal evolutions and the spatio-temporal
dynamics, respectively. Recently, some works [14]–[16] also
feed skeleton graphs into graph convolutional networks (GCN)
to exploit the structure information of human body. However, all
the aforementioned methods apply stacked local networks to hi-
erarchically extract spatio-temporal features, which lead to two
serious problems. 1) The recurrent and convolutional operations
are neighborhood-based local operations [17], so the local-range
detailed information and non-local semantic information mainly
be captured asynchronously in the lower and higher layers re-
spectively, which hinders the fusion of details and semantics
in action dynamics. 2) Some human actions have characteristic
frequency patterns (See Fig. 1), but previous works are always
limited to the spatio-temporal dynamics and ignore the discrim-
inative patterns in the frequency domain.

To move beyond such limitations, we propose a novel model
SLnL-rFA to better extract synchronous detailed and seman-
tic information from multi-domains. SLnL-rFA is equipped
with synchronous local and non-local (SLnL) blocks for spatio-
temporal learning, and a residual frequency attention (rFA)
block for frequency-patterns mining. Fig. 2 shows the over-
all pipeline of our method. Firstly, an adaptive transform net-
work augments and transforms the skeletal actions. Secondly,
the residual frequency attention block selects discriminative fre-
quency patterns. Then, M1 synchronous local and non-local
(SLnL) blocks and M2 local blocks are applied sequentially
in the spatio-temporal domain, where SLnL block is designed
to simultaneously extract local details and non-local semantics.
Thus, we obtained three modalities of feature including branches
of position feature, velocity feature and concatenated feature.
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Fig. 1. The mean frequency maps corresponding to three different action
classes in the NTU RGB+D dataset. Note that the frequency maps are obtained
from the spatio-temporal input features X′ of the proposed residual frequency
attention (See Fig. 2 for details). To facilitate visualization, the zero-frequency
component is shifted to the center of map by function fftshift.

In addition, to optimize the whole learning processes of the
multi-branch network with multi-modal features, we adopt a
pseudo multi-task learning (MTL) manner. During training,
a soft-margin focal loss (SMFL) is proposed to optimize the
intra-branch learning process, which can automatically conduct
data selection and encourage intrinsic margins in classifiers. Be-
sides, a mutual learning policy is also proposed to further facili-
tate the inter-branch collaboratively learning process, which can
encourage the feature branches to mutually aiding each other.

Finally, the main contributions of this paper can be summa-
rized as follows:

1) Moving beyond the spatio-temporal domain, we propose
a residual frequency attention block to exploit frequency
information for skeleton-based action recognition.

2) We propose a synchronous local and non-local block to
simultaneously capture details and semantics in the early-
stage layers of the network.

3) We propose a soft-margin focal loss, which can adaptively
conduct data selection during training process and encour-
age intrinsic soft-margins in the classifiers.

4) We put the fusion of multi-modal features under a pseudo
multi-task learning paradigm, and further proposed a mu-
tual learning policy to facilitate the collaboration among
different feature branches.

5) Our approach consistently outperforms the state-of-the-
art methods on several datasets for skeleton-based ac-
tion recognition, including the NTU RGB+D, Kinetics,
N-UCLA, and SYSU datasets.

We note that a preliminary report of this work was published
in a conference [18]. As an extension of the preliminary ver-
sion, we further proposed a mutual learning policy to facili-
tate the inter-branch aiding during the learning of MTL task,
and an adaptive coordinate transform to enrich the skeletal ac-
tion representation in multiple oblique coordinate systems. We
also extensively enrich the experimental datasets, ablation anal-
yses, and visualizations to give more insights on the proposed
FA, SLnL and SMFL blocks. Furthermore, the influence of key
hyper-parameter choice is also explored. Finally, we present
analysis about model complexity and inference efficiency of the
proposed framework.

II. RELATED WORKS

In this section, we briefly review the previous works which
are closely related to the proposed method.

A. Skeleton-Based Action Recognition

Previous skeleton-based action recognition methods can be
categorized into two classes: hand-crafted features based meth-
ods and deep learning methods. Hand-crafted features based
methods include histograms of 3D joint locations [19], action-
let ensemble obtained from data minning [20], covariance ma-
trices of joints trajectories and relative joint positions [20],
[21], and joints in a Lie group [22]. Deep learning methods
include RNN-based methods [8], [10], [23], CNN-based meth-
ods [13], [24], and graph based method [9], [14]–[16], [25], [26].
These approaches progressively use local operations to model
spatio-temporal dynamics and have no non-local operation to
explore global information in early-stage layers, while our work
synchronously fuse local and non-local features in lower layers.

B. Frequency Domain Analysis

Generalized frequency domain analysis contains several large
classes of methods such as discret Fourier transform (DFT),
short-time Fourier transform (SFT) and wavelet tranform, which
are classical and powerful tools in the fields of signal analysis
and image processing [27]. Due to the booming of deep learn-
ing techniques [28]–[30], methods based on the spatio-temporal
domain dominate the field of computer vision, with only a few
works paying attention to the frequency domain. For example,
frequency domain analysis of critical points trajectories [31] and
frequency divergence image [32] are applied for RGB-based ac-
tion recognition. Scattering convolution network with wavelet
filters are used for object classification [33]. Our work will re-
visit the frequency domain, and exploit discriminative frequency
patterns to improve the skeleton-based action recognition.

C. Non-Local Operations

Non-local means is a classical filtering algorithm that al-
lows distant pixels to contribute to the target pixel [34]. Block-
matching [35] explores groups of non-local similarity between
patches, which is a solid baseline for image denoising. Block-
matching is widely used in computer vision tasks like super-
resolution [36], image inpainting [37], image denoising [38]
etc. The popular self-attention [39] in machine translation can
also be viewed as a non-local operation. Recently, different
non-local blocks are inserted into CNNs for video classifica-
tion [17] and RNNs for image restoration [40]. However, their lo-
cal and non-local operations apply to objects in different level of
layers but our SLnL simultaneously operate on the same objects,
thus only the proposed SLnL can extract local and non-local in-
formation synchronously.

D. Reformed Softmax Loss

The softmax loss [41], consisted of the last fully connected
layer, the softmax function, and the cross-entropy loss, is widely
applied in supervised learning due to its simplicity and clear
probabilistic interpretation. However, recent works [41]–[43]
have exposed its limitations on feature discriminability and have
stimulated two types of improvements. One type directly re-
fines or combines the cross-entropy loss with other losses like
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Fig. 2. The overall pipeline of the proposed method. The position and velocity information of human joints are fed into a tranform network, a residual frequency
attention network, M1 synchronous local and non-local blocks, and M2 local blocks sequentially. Treated as a pseudo multi-task learning task, the model is
optimized by conventional separated learning and the proposed mutual learning policy, see Fig. 6(d) for details.

contrastive loss, triplet loss, etc [42], [44]. The other type re-
formulates the softmax function with geometrical or algebraic
margin [41], [42] to encourage intra-class compactness and
inter-class separability of feature learning, which completely
destroys the probabilistic meaning of the original softmax func-
tion. Contrastively, our SMFL not only conducts data selection
but also encourages intrinsic soft-margins in classifiers with a
clear probabilistic interpretation, which will be proved in the
Methods section.

E. Adaptive Data Selection

The contributions of easy data and hard data are different
among the training processes of neural networks, thus adap-
tive data selection strategy significantly impact the model per-
formance and training efficiency [45]. Some previous studies
adopt heuristic rules to adjust the sampling probabilities of the
train data, such as curriculum learning [46], self-paced learn-
ing [47], online batch selection [48], etc. Fan et al. [45] also
uses deep reinforcement learning framework to automatically
learn what data to learn. However, the aforementioned methods
require extra data selection networks or complex modifications
to the mainstream shuffle-based training pipeline, while the fo-
cal loss [49] introduces only simple modification to the loss
function that can encourage effective data selection. Thus our
soft-margin focal loss also falls into this paradigm.

III. METHODS

The overall pipeline have been introduced in the Introduc-
tion section. In this section, we will dig into the details of each
component separately.

A. Preliminary

A skeletal action X ∈ Rd×T×N is represented by d dimen-
sional locations ofN body joints in a T frames video sequence.

Directly taking action X as a d-channels spatio-temporal im-
age will lose structural information among skeletons. Follow-
ing Li et al. [24], each skeleton S ∈ RN×d with the structure-
less permutation is adaptively augmented and rearranged as an
optimal permutation S′ ∈ RN ′×d through a transform function
S′ = W sS, where W S ∈ RN ′×N is the transform matrix and
N ′ is the number of new joints. As a result, the transform can
adaptively learn an optimal permutation of joints, and augment
the joint number from N to N ′ where each new joint is a linear
combination of original N joints.

Similarly, we propose a coordinate transform to transfer the
original joint representation J0 ∈ Rd in the single rectangular
coordinate system to rich representations J1,J2, . . . ,JK in K
oblique coordinate systems. J i = CT

i J0, where Ci is the tran-
sition matrix from the original coordinate system to a new coor-
dinate system i. For convenience, theK coordinates are concate-
nated as J = [J1,J2, . . . ,JK ]T , and similar for the transition
matrices C = [C1,C2, . . . ,CK ]T . Therefore, the expressions
of human actions are enriched to K oblique coordinate systems
by the concatenated transform matrix C.

The whole transform network in Fig. 2 is implemented with
fully connected layers and corresponding transpose, flatten, and
concatenate operations. As a result, a new adaptive expression
X ′ ∈ RKd×T ′×N ′

is formed for each action.

B. Residual Frequency Attention

Previous works always concentrate on the spatio-temporal
domain, but many actions contain inherent frequency-sensitive
patterns, such as shaking hands, and brushing teeth. The gap
motivates us to revisit the frequency domain. The classical op-
erations in the frequency domain, such as high-pass, low-pass,
and band-pass filters, only have a few parameters that are far
from enough, thus we propose a more general frequency atten-
tion block (Fig. 3) equipped with abundant learnable parameters
to adaptively select frequency components.

Given a transformed action after the transform network
X ′ ∈ RC ′×T ′×N ′

(C ′ = Kd, T ′ = T ), the 2D discret Fourier
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Fig. 3. The detailed structure of residual frequency attention. The spatio-
temparal domain and frequency domain are switched conveniently through
2D-FFT and 2D-IFFT. The attention for the sinusoidal and cosine components
(F sin,F cos) are conducted in the frequency domain, and the residual component
is applied in the spatio-temporal domain.

transform (DFT) transforms the pseudo spatio-temporal image
X ′ in each channel toY ′ ∈ RC ′×T ′×N ′

in the frequency domain
via

Y ′[c, u, v] =
T ′−1∑
t=0

N ′−1∑
n=0

X ′[c, t, n] cos
(
−2π

(
ut

T ′ +
vn

N ′

))

+ j

T ′−1∑
t=0

N ′−1∑
n=0

X ′[c, t, n] sin
(
−2π

(
ut

T ′ +
vn

N ′

))

= F cos[c, t, n] + jF sin[c, t, n], (1)

where u, v and c are frequencies and channel of spatio-temporal
image respectively. F cos and F sin denote the cosine and sinu-
soidal component, respectively. The frequency spectrum FA =
(F 2

cos + F 2
sin)

1/2 and the phase spectrumF φ = arctan(− F sin
F cos

).
In practice, the DFT and its inverse (IDFT) are computed
through the fast Fourier transform (FFT) algorithm and its in-
verse (IFFT).

For each action, the attention weights M cos and M sin are
complex functions of its cosine and sinusoidal components in
the frequency domain, i.e.

M i = dup(σ(W i1(W i2(Avg(F i)) + bi1) + bi2)), (2)

where i ∈ {cos, sin}. Specifically, after a channel averaging op-
eration, each component is fed into two fully connected layers

(FC) to learn adaptive weights for each frequency, followed by a
sigmoid transfom function. The first FC layers serve as a bottle-
neck layer [29] for dimensionality reduction with a ratio factor
λ. Then, the learned attention weights are duplicated to every
channel to pay attention to the input frequency image via

F ′
sin = F sin �M sin, (3)

F ′
cos = F cos �M cos, (4)

where � denotes the element-wise multiplication. Eventually,
to avoid severely destroying information in the spatio-temporal
domain when strengthening the key frequent patterns, a spatio-
temporal residual trick is applied to obtain the final outputX ′′ ∈
RC ′×T ′×N ′

after attention, i.e.

X ′′ = X ′ + ifft2(F ′
sin,

′ F ′
cos), (5)

where ifft2 denotes the efficient 2-dimensional IFFT.

C. Synchronous Local and Non-Local Learning in the
Spatio-Temporal Domain

1) Non-Local Module: A general non-local operation takes
a multi-channel signal X ∈ RM×P as its input and generates a
multi-channel output Y ∈ RM×Q. Here P and Q are channels,
and M is the number of Ω, where Ω is the set that enumerates
all positions of the signal (image, video, feature map, etc.). Let
xi and yi denote the i-th row vector of X and Y , respectively,
the non-local operation is formulated as follows:

yi =
1

Zi(X)

∑
j∈Ω

φ(xi,xj)g(xj), ∀i ∈ Ω (6)

where the multi-channel unary transform g(xj) computes the
embedding of xj , the multi-channel binary transform φ(xi,xj)
computes the affinity between the positions i and j, andZ(X) is
a normalization factor. With different choices of φ and g, such as
Gaussian, embedded Gaussian and dot product, various of non-
local operations could be constructed. For simplicity, we only
consider φ and g in the form of linear embedding and embedded
Gaussian respectively, and set Zi(X) =

∑
j∈Ω φ(xi,xj), i.e.

g(xj) = (W gx
T
j )
T , ∀j (7)

where W g ∈ RQ×P are learnable transform parameters.

φ(xi,xj) = eϕ(xi)
Tψ(xj), ∀i, j (8)

ϕ(xi) = (W ϕx
T
i )
T , ∀i (9)

ψ(xj) = (W ψx
T
j )
T , ∀j (10)

where W ϕ,W ψ ∈ RL×P , and L denotes the embedding chan-
nel. To weigh how important the non-local information is when
compared to local information, a weighting function is ap-
pended, i.e.

w(yi) = (Ww(yi)
T )T , (11)

where Ww ∈ RQ×Q. Note that the non-local modules can be
drop-in pretrained model without breaking its initial behavior by
initializing Ww as 0. A non-local module with a d-dimensional
input can be completed with some transpose operations, some
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Fig. 4. (a) A 2D example of non-local module. (b) The structure of the baseline local block. (c) The structure of the proposed synchronous local and non-local
(SLnL) block. (d) The affinity field of synchronous local and non-local block. Note that the affinity field is a more general concept than the receptive field of CNNs.
The red and blue in (d) represent local and non-local modules, repectively.

convolutional layers with the kernels of 1, and a softmax layer,
Fig. 4(a) shows a 2D example.

2) Baseline Local Block: The local operation is defined as

yi =
1

Zi(X)

∑
j∈δi

φ(xi,xj)g(xj), ∀i ∈ Ω (12)

where δi is the local neighbor set of target position i, δi �
Ω. And Zi(x) is the local normalization factor within δi.
The convolution is a typical local operation with identity
affinity φ(xi,xj) = 1, liner transform g(xj) = wjxj , iden-
tity normalization factor Zi(X) = 1, and δi is the neighbors
around target center i with a same shape of kernel. Our base-
line local block is constructed from convolution operation.
As shown in Fig. 4(b), two convolutional layers with ker-
nel k × 1 and 1× k are applied to learn temporal local (tLo-
cal) features and spatial local (sLocal) features respectively,
and a k × k convolutional layer for spatial-temporal local (st-
Local) features. The block also contains a residual path, a
rectified linear unit (ReLU) and a batch normalization (BN)
layer.

3) Synchronous Local and Non-Local Block (SLnL): In
order to synchronously exploit local details and non-local se-
mantics in human actions, three non-local modules are par-
allel merged into the above baseline local block. As shown
in Fig. 4(c), two 1D non-local modules to explore temporal
non-local (tNon-Local) and spatial non-local (sNon-Local) in-
formation respectively, followed by a 2D non-local module for
spatio-temporal non-local (stNon-Local) patterns. We define the
affinity field as the representation of the range of pixel indices
that could contribute to the target position in the next layer of the
local or non-local modules, which is a more general concept than
the receptive field of CNNs. The affinity field in Fig. 4(d) clearly
shows our SLnL can mine local details and non-local semantics
synchronously in every layer. Note that our SLnL is significantly
different from the methods [17], [40] which only inserted a few
non-local modules after stacked local networks, thus the local

and non-local operations are still separately conducted in differ-
ent layers having different resolutions. Contrastively, our SLnL
simultaneously captures local and non-local patterns in every
layer (Fig. 4(d)).

D. Soft-Margin Focal Loss

A common challenge for classification tasks is that the dis-
crimination difficulties are different across samples and classes,
but most previous works for skeleton-based action recognition
use the softmax loss that haven’t taken it into consideration.
There are two possible measures to alleviate it, i.e. data selec-
tion and margin encouraging.

Intuitively, the larger predicted probability a sample has, the
farther away from the decision boundary it might be, and vice
versa. Motivated by this intuition, we construct a soft-margin
(SM) loss term as follows:

LSM (pt) = log (em + (1− em)pt) , (13)

where pt is the estimated posterior probability corresponding to
ground truth class, and m is a margin parameter. LSM ∈ [0,m]
for the fact that pt ∈ [0, 1]. As Fig. 5 shows when the posterior
probability pt is small, the sample is more likely close to the
boundary, thus we penalize it with a relative large margin loss.
Otherwise, a small margin loss is imposed. To further illustrate
the idea, we introduce the LSM term into the cross entropy loss
leading to a soft-margin cross entropy (SMCE) loss,

LSMCE(pt) = LSM + LCE
= log (em + (1− em)pt)− log(pt). (14)

Assuming thatx ∈ Rd is the features before the last FC layer, the
FC layer transforms it into score z = [z1, z2, . . . , zC ]

T ∈ RC

of C classes by multiplying W = [w1,w2, . . . ,wC ] ∈ Rd×C ,
where wc is the parameter of the linear classifier corresponding
to the class c, i.e. zc = wT

c x. Followed with a softmax layer,

pt =
ewtx

∑C
c=1 e

wcx
and (1− pt) =

∑C
c�=t e

wcx

∑C
c=1 e

wcx
, then the SMCE can
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Fig. 5. Comparisons among our soft-margin focal loss (SMFL), the soft-
margin cross entropy (SMCE) loss, the cross-entropy (CE) loss, the focal loss
(FL), and the soft-margin loss (SM). The focusing parameter γ and the margin
parameter m of losses are expressed as (γ,m).

be rewritten as

LSMCE = log (pt + em · (1− pt))− log(pt)

= log

(
ewtx + em ·∑C

c �=t e
wcx∑C

c=1 e
wcx

)

− log

(
ewtx∑C
c=1 e

wcx

)

= − log

(
ewtx

ewtx + em ·∑C
c �=t ewcx

)

= − log

(
ewtx−m

ewtx−m +
∑C
c �=t ewcx

)
. (15)

Comparing the standard softmax loss with Eq.15, only the score
of the ground truth classwtx is replaced bywtx−m. Optimiz-
ing model with SMCE, we will obtain classifiers that meet the
constraint wtx−m ≥ wc �=tx. As a result, an intrinsic margin
m between the positive (belonging to a specific class) samples
and the negative (not belonging to the specific class) samples of
each class will be formed in classifiers by adding the SM loss
term into the loss function.

In addition, the focal loss [49] defined as

LFL(pt) = −(1− pt)
γ log(pt), (16)

where γ is a focusing parameter, can encourage adaptive data
selection without any damage to the original model structure
and training processes. As Fig. 5 shows the relative loss for
well-classified easy samples is reduced by FL when compared
to CE. Although FL pays more attention to hard samples, it has
no margin around the decision boundary. Similar to SMCE, we
introduce the LSM term into FL to obtain the soft-margin focal

loss (SMFL) as follows:

LSMFL(pt) = LSM + LFL
= log (em + (1− em)pt)− (1− pt)

γ log(pt).
(17)

Finally, the proposed SMFL can encourage intrinsic margins in
classifiers and maintain FL’s advantage of adaptive data selection
as well.

E. Pseudo Multi-Task Learning

The two-stream network produces features from both position
and velocity information (Fig. 2), thus it is vital to explore an
effective multi-modal feature fusion policy. Most of the existing
works directly sum or concatenate the position feature fp and
the velocity feature fv , as shown in Fig. 6(a) and Fig. 6(b). In
these policies, the two-modal information are completely entan-
gled with each other that is hard to optimize. Contrastively, we
treat the multi-modal optimization task as a pseudo multi-task
learning paradigm (Fig. 6(c)), thus the sub-tasks that contain
only one feature modality (fp or fv) can provide optimization
guide to the tangled feature modality f c. Specifically, each of
the three predicted probabilities pp, pv , pc produces a SMFL
loss via,

Lk =
C∑
i=1

yi
(
log(em + (1− em)pki )− (1− pki )

γ log(pki )
)
,

(18)

where k ∈ {p, v, c} is modality type, and y = (y1, y2, . . . , yC)
is the one-hot class label. With conventional separated learning
policy in Fig. 6(c), the final supervised loss of the multi-task
learning task is obtained as follows:

Lsup = Lp + Lv + Lc. (19)

Besides, as shown in Fig. 6(c), the sub-networks with dif-
ferent feature modalities try to learn the same joint probabil-
ity regarding video clips and action classes. This paradigm is
somewhat similar as a situation in which a handful of persons
are assigned to learn a common task. Motivated by the fact
that persons can mutually teach each other, we proposed a mu-
tual learning policy to further assist the training process of the
pseudo multi-task learning task (Fig. 6(d)). Specifically, every
feature branch k ∈ {p, c, v} learns from another feature branch
j ∈ {p, c, v} by minimizing their Kullback-Leibler Divergence,
thus the divergence punishment for branch k is,

Dk =
1

2

∑
j �=k

DKL(pj ‖ pk). (20)

Then a mimicry loss for the mutual learning policy can be
formulated as

Lmim = Dp +Dc +Dv
= DJS(pp ‖ pc) +DJS(pc ‖ pv) +DJS(pv ‖ pp),

(21)

where the DJS denotes Jensen-Shannon Divergence (JSD).
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Fig. 6. Comparing different processing policies for multi-modal features. Contrasting to the feature summimg (a) or concatenating (b) policy, we put the task
under a pseudo multi-task learning (MTL) paradigm. Then, the MTL task is optimized only by the conventional separated learning policy (c) or further assisted
with the proposed mutual learning policy (d). The “FC” denotes fully connected layer, the “SMFL” block is the proposed soft-margin focal loss, and the “JSD”
denotes Jensen-Shannon Divergence.

Fig. 7. The sketches to illustrate joint locations in different skeleton-based human action recognition datasets. The NTU-RGB+D and Kinetics datasets captured
25 and 18 joints respectively while SYSU and UCLA datasets both captured 20 joints.

Finally, the multi-task learning task can not only learn from
the supervised loss via separated learning policy, but also learn
from the mimicry loss via mutual learning policy, i.e.,

L = Lsup + λLmim, (22)

where λ is the parameter to control the influence of mutual learn-
ing policy. After trained with the total loss L, the obtained prob-
ability pc is eventually adopted to predict the action class during
inference.

IV. EXPERIMENTS

A. Datasets and Experimental Details

NTU RGB+D (NTU) dataset [10] is currently the largest
in-door action recognition dataset. It contains 56,000 clips in 60

action categories performed by 40 subjects. Each clip consists of
25 joint locations with one or two persons, and the joint sketch
is shown in Fig. 7(a). There are two evaluation protocols for this
dataset, i.e., cross-subject (CS) and cross-view (CV). For the
cross-subject evaluation, 40320 samples from 20 subjects are
used for training and 16540 samples from the rest subjects are
used for testing. For the cross-view evaluation, samples are split
by camera views, with two views for training and the rest one
for testing.

Kinetics dataset [50] is by far the largest unconstrained ac-
tion recognition dataset, which contains 300,000 video clips in
400 classes retrieved from YouTube [14]. The skeleton dataset
is estimated by Yan et al. from the raw RGB videos by the
OpenPose toolbox [14]. Each joint consists of 2D coordinates
(X,Y ) in the pixel coordinate system and a confidence score
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C, thus finally represented by a tuple of (X,Y,C). Each skele-
ton frame is recorded as an array of 18 joint tuples, and the
joint sketch is shown in Fig. 7(b). For the multi-person cases,
2 people with the highest average joint confidence in each clip
is selected. The dataset is split into training set and validation
set with 240,000 and 20,000 clips, respectively. We use the re-
leased skeletal dataset to train our model, and evaluate the per-
formance by the top-1 and top-5 accuracies as recommended
by Key et al. [50]. To have fair comparisons with the previous
works [14], [51], the confidence score is also treated as a channel
of input in this paper.

SYSU 3D Human-Object Interaction (SYSU) dataset [52]
is collected by Kinect camera. It contains 480 skeleton clips of
12 action categories performed by 40 subjects and each clip has
20 joints (Fig. 7(c)). There are two standard evaluation protocols
for this dataset, i.e., cross-subject (CS) setting and same-subject
(SS) setting [52]. Following [16], we use the 30-fold cross val-
idation and report their mean accuracy for each setting. For the
cross-subject setting, half of the subjects are used for training
and the rest are for testing. For the same-subject setting, half of
the samples from each activity are used for training and the rest
are for testing.

Northwestern UCLA Multiview Action 3D (N-UCLA)
dataset [53] is simultaneously captured by three Kinect cam-
eras from a variety of viewpoints. It contains 1494 video clips
covering 10 action categories performed by 10 different of sub-
jects. Each person contains 20 joints, as shown in Fig. 7(d).
Following the evaluation protocol in [53], samples of the first
two cameras constitute the training set, and samples of the third
camera constitute the testing dataset.

Implementation Details: During the data preparation, we
firstly translate the origin of coordinate system to the body cen-
ter of the first frame, then randomly crop a sub-sequence from
the entire sequence. We randomly crop sequences with a ratio
uniformly drawn from [0.5,1] for training, and centrally crop
sequences with a fixed ratio of 0.95 for inference. We resize the
sequences to a length of 64, 64, 64, 128 frames with bilinear
interpolation for SYSU, N-UCLA, NTU and Kinetics, respec-
tively. Finally, the obtained data are fed into a batch normal-
ization layer to normalize the scale. During training, we apply
Adam optimizer with weight decay of 0.0005. Learning rate is
initialized as 0.001, followed by an exponential decay with a rate
of 0.92, 0.95, 0.98, 0.95 per epoch for SYSU, N-UCLA, NTU
and Kinetics, respectively. A dropout with ratio of 0.2 is applied
to each block to alleviate overfitting for all datasets. The con-
trolling parameter for mutual learning policy is empirically set
as 0.1. The model is trained for in total 40, 60, 100, 300 epoches
with a batch size of 16, 32, 32, 128 for SYSU, N-UCLA, NTU
and Kinetics, respectively. All the experiments are conducted
with the PyTorch framework.

Each stream of model for SYSU, N-UCLA or NTU datasets
is composed of totally 6 blocks in Fig. 4 with local kernels of
3 and channels of 64, 64, 128, 128, 256, 256 respectively, also
max-pooling is applied every two blocks. For Kinetics, two ad-
ditional blocks with channels of 512 are appended, also the local
kernels of the first two blocks are changed into 5. The numbers

TABLE I
COMPARING WITH THE STATE-OF-THE-ART APPROACHES IN ACTION

RECOGNITION ACCURACY (%) ON THE NTU-RGB+D DATASET

of new coordinate systemsK and new jointsN ′ in the transform
network are set as 10 and 64 for all datasets.

B. Experimental Results

To validate the effectiveness and generalization of the pro-
posed SLnL-rFA in constrained and unconstrained environ-
ments, we conduct experiments on in total four datasets for
skeleton-based action recognition, incuding the NTU RGB+D,
Kinetics, SYSU, and N-UCLA datasets. In this section, we com-
pare the performances of the proposed SLnL-rFA and its mutual
learning version SLnL-rFA+ML against other state-of-the-art
methods. Because there is no previous method with the capa-
bility of mining patterns in the frequency domain for skeleton-
based action recognition, we only compare our method to the
ones in the spatio-temporal domain.

On NTU RGB+D dataset, we compare with one hand-crafted
features method [22], four RNN-based methods [8], [10], [11],
[54], four CNN-based methods [13], [24], [55], [56], three graph
convolutional methods [14]–[16], one graph and LSTM hy-
bridized method [9]. As the local components of our SLnL
are CNN-based while the non-local components are designed
to learn the affinity degree between each target position (node)
to every position (node) in the figure (graph), our SLnL-rFA can
be treated as a variant of CNN and graph hybridized method.
As shown in Table I, the deep learning methods outperform
the hand-crafted method, the CNN-based methods are gen-
erally better than LSTM-based methods, and graph-based or
graph-hybridized methods also perform well. Our preliminary
method SLnl-rFA consistently outperforms the state-of-the-art
approaches proposed at the same time by a large margin for
both cross-subject (CS) and cross-view (CV) evaluation. Specif-
ically, the SLnL-rFA outperforms the best CNN-based method
at that time (HCN) by 2.6% (CS) and 3.8% (CV), also out-
performs the best graph-related approach at that time (SR-
TSL) by 4.3% (CS) and 2.5% (CV). Moreover, our preliminary
SLnL-rFA is even superior to two recently reported works [15],
[16]. Finally, through further exploiting the proposed mutual
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TABLE II
COMPARING WITH THE STATE-OF-THE-ART APPROACHES IN ACTION

RECOGNITION ACCURACY ON THE KINETICS DATASET. BOTH OF THE TOP-1
AND TOP-5 ACCURACIES ARE REPORTED

TABLE III
COMPARING WITH THE STATE-OF-THE-ART APPROACHES IN ACTION

RECOGNITION ACCURACY (%) ON THE SYSU DATASET

REGARDING THE CS AND SS PROTOCOLS

learning policy for collaboratively learning, our SLnL-rFA+ML
achieves the best accuracy on both the evaluation protocols of CS
and CV.

On Kinetics dataset, we compare with five characteristic
methods, including hand-crafted features [57], deep LSTM net-
work [10], temporal convolutional network [58], and graph con-
volutional networks [14], [16]. As shown in Table II, the deep
models outperform the hand-crafted features method, and the
CNN-based method works better than the LSTM-based method.
Our preliminary SLnL-rFA outperforms the state-of-the-art
approach proposed at the same time (ST-GCN) by large mar-
gins of 5.9% (top1) and 6.3% (top5) for recognition accura-
cies. The extended version SLnL-rFA+ML again achieves the
state-of-the-art performance, which indicates the effectiveness
of the proposed method.

On SYSU dataset and N-UCLA dataset, the methods to be
compared with also fall into the categories of hand-crafted fea-
tures methods [22], [63], RNN-based methods [8], [54], [59],
[61], [62], [65], CNN-based methods [55], [64], and graph-based
methods [9], [16], [60]. The recognition results are shown in
Table III and Table IV, respectively. Similarly, the CNN- or
graph-based methods currently dominate this task and generally
achieve better than hand-crafted features or LSTM-based meth-
ods in the early period. Our preliminary method SLnL-rFA and
extended version SLnL-rFA+ML consistently outperform other
state-of-the-art approaches on both of the two datasets.

TABLE IV
COMPARING WITH THE STATE-OF-THE-ART APPROACHES IN ACTION

RECOGNITION ACCURACY ON THE N-UCLA DATASETS

TABLE V
COMPARISONS OF DIFFERENT TRANSFORM METHODS IN ACCURACY (%)

C. Ablation Studies and the Influence of Parameters

To analyze the effectiveness of every component, extensive
ablation studies are conducted on the N-UCLA dataset, the NTU
RGB+D dataset with cross-view protocol (NTU-CV), and the
NTU RGB+D dataset with cross-subject protocol (NTU-CS).

1) Raw Data vs. Transformed Data: The baseline model
(Baseline0) of this section contains only local blocks in Fig. 4(b).
The baseline network inputs raw data without any transform
(No Trans.), and it is optimized with conventional cross entropy
loss and separated learning policy. The coordinate and skele-
ton transform, the coordinate transform, the skeleton transform,
and a CNN variant with the same depth are respectively applied
to transform the raw data. As shown in Table V, the perfor-
mances obtained with transformed data consistently outperform
that with the raw data. The improvement of coordinate transform
indicates that representing action in adaptive multiple oblique
coordinate systems is better than the original coordinate system.
Also the improvement of skeleton tranform indicates the aug-
mented and rearranged data encode more structure information
than the original structureless data. Even with the same depth,
the improvement of CNN variant is insignificant, indicating that
our improvement is not induced by adding depth. Finally, the
coordinate and skeleton transform preforms the best, indicat-
ing that the coordinate transform and the skeleton transform are
complementary to each other.

2) Comparisons on Loss Function: We firstly further reform
the Baseline0 into Baseline1 by adding the above coordinate
and skeleton transform network for this section. Then the model
is optimized with the cross entropy loss (CE), focal loss (FL),
soft-margin cross entropy loss (SMCE), and soft-margin focal
loss (SMFL), respectively. To save space, at most two best pa-
rameters for each loss are listed in Table VI. Due to the adaptive
data selection, the FL performs better than the CE. Benefiting
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Fig. 8. The 2-dimensional t-SNE visualization of obtained features according to different loss functions on the NTU-CV dataset. (a), (b) and (c) are obtained with
the cross entropy loss (CE), soft-margin cross entropy loss (SMCE), and soft-margin cross focal loss (SMFL), respectively. The numbers denote the action labels.
Comparing (a) with (b), we can see that the SMCE has larger inter-class distances, indicating that the proposed soft-margin loss term is beneficial to encourage
margin between positive samples and negative samples. However, some hard samples in (b) are still seriously confused, such as “10” vs “11,” “52” vs “53”.
Fortunately, our SMFL (c) could alleviate this issue by further combining the advantage of hard sample mining from the focal loss.

TABLE VI
COMPARISONS OF DIFFERENT LOSS FUNCTIONS IN ACCURACY. THE FOCUSING

PARAMETER γ AND THE MARGIN PARAMETER m OF LOSSES ARE

EXPRESSED AS (γ,m)

from the encouraged margins between the positive and negative
samples, both the SMCE and the SMFL perform better than their
original versions CE and FL, respectively. Finally, our SMFL
achieves the best for its advantages from adaptive data selection
and intrinsic margin encouraging.

To further intuitively understand the advantages of the pro-
posed SMFL, we apply t-SNE [66] to visualize the learned fea-
tures of different losses, including the losses of CE, SMCE, and
SMFL. Comparing Fig. 8(a) with Fig. 8(b), we can see that the
feature obtained by our SMCE performs better, and it has larger
inter-class and smaller intra-class distances. The result indicates
that the proposed soft-margin loss term is beneficial to encourage
margin between positive samples and negative samples. How-
ever, Fig. 8(b) also shows that some hard samples from several
class pairs are still seriously confused, such as “10” vs “11,” “52”
vs “53,” and “30” vs “31”. Fortunately, the results in Fig. 8(c)
indicate that the proposed soft-margin focal loss could alleviate
this issue by further combining the advantage of hard sample
mining from the focal loss. As a result, the network optimized
with our soft-margin focal loss learned the most discriminative
features.

TABLE VII
PERFORMANCE COMPARISONS OF DIFFERENT FREQUENCY ATTENTION

METHODS IN HUMAN ACTION RECOGNITION ACCURACY (%)

3) How to Select Discriminative Frequency Patterns: We
firstly reform the Baseline1 into Baseline2 (No FA) for this
section by adding the SMFL. To validate the effectiveness of
proposed rFA, we compare it with several variants. The ampli-
tude frequency attention (aFA) is built on frequency spectrum
instead of sinusoidal and cosine components. The sinusoidal
FA (cosine FA) that uses only sinusoidal (cosine) component.
The shared frequency attention (sFA) learns shared attention
parameters for sinusoidal and cosine components, while the de-
pendent frequency attention (dFA) learns two set of parameters
independently. The rfA is constructed by applying the residual
learning trick to dFA in the spatio-temporal domain (Fig. 3).
The spatio-temporal attention applies residual attention to orig-
inal spatio-temporal feature X ′ in Fig. 3 directly. In Table VII,
we can see that the aFA is harmful since the phase angle in-
formation is completely missing when only using the frequency
spectrum. The dFA outperforms the sFA because that it has more
parameters to model the frequency patterns. Besides, we can see
that the residual spatio-temporal attention in the spatio-temporal
domain can also bring some improvements over Baseline2. In
addition, the rFA achieves the best because that its residual trick
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TABLE VIII
COMPARISONS OF IMPROVEMENT DIFFERENCES ON THE KINETICS DATASET

AND KINETICS-FREQUENCY DATASET. THE TOP-1 ACTION RECOGNITION

ACCURACIES (%) ARE REPORTED

can strengthen key frequency patterns without destroying infor-
mation in the spatio-temporal domain severely. Finally, the rFA
outperforms the Baseline2 with a large margin, indicating that
the frequency information is effective for skeleton-based action
recognition task.

4) Does the rFA Indeed Improve the Performance on
Frequency-Related Actions: Inspired by the “Kinetics-Motion”
in [14], we select a subset of 30 (out of 400) action classes
from the Kinetics dataset that have characteristic frequency
patterns (referred as Kinetics-Frequency), which includes ac-
tions like “shaking head,” “playing drums,” and “filling eye-
brows”. Then, two variants of our SLnL+rFA+ML with rFA
(w/ rFA) are constructed by replacing the rFA block with a
residual spatio-temporal attention (w/ S.T. Atten.) and directly
removing all attention (w/o Atten.), respectively. The results
obtained from the original Kinetics dataset and the selected
Kinetics-Frequency dataset are shown in Table VIII. We can
see that the improvements from rFA are larger than these from
residual spatio-temporal attention on both datasets, indicating
the effectiveness of the proposed rFA. Moreover, on the selected
frequency-related subset, the increment from our rFA is much
more significant than that from the spatio-temporal attention,
indicating that our rFA indeed improves the recognition perfor-
mance of frequency-related actions.

5) Comparisons of Methods with Different Affinity Fields:
We further reform the Baseline2 into Baseline3 with a rFA block
for this section. Although non-local dependencies can be cap-
tured in higher layers of hierarchical local networks, it appears to
be brutal and with low efficiency. We argue that synchronously
explore and fuse non-local information in early stages is more
preferable. We merge one temporal non-local module (tSLnL),
spatial non-local module (sSLnL), or spatial-temporal non-local
block (SLnL) into Baseline3 to examine their effectiveness. As
shown in Table IX, both the non-local information from the
temporal and spatial dimensions during early stages are helpful.
In addition, benefiting from the synchronous fusion of the lo-
cal details and non-local semantics, the proposed SLnL blocks
boosts up the recognition performance w.r.t Baseline3 by 1.1%
(NTU-CV), 1.4% (NTU-CS) and 0.9% (N-UCLA), respectively.

To further investigate the properties of deeper SLnL blocks,
we replace M1 local blocks in Baseline3 with SLnL block. Ta-
ble IX shows more SLnL blocks in lower layers generally lead to
better results, but the improvements of higher layers is relatively
small because the affinity field of local operations is also increas-
ing with layers. The results clearly show that synchronously
extracting local details and non-local semantics is vital for mod-
eling the spatio-temporal dynamics of actions.

TABLE IX
COMPARISONS OF METHODS WITH VARIOUS AFFINITY FIELDS IN ACCURACY

(%). M1 AND M2 DENOTES THE NUMBERS OF SLNL AND LOCAL BLOCKS IN

FIG. 2, RESPECTIVELY. M1 +M2 = 6

TABLE X
PERFORMANCE COMPARISONS OF DIFFERENT MULTI-MODAL PROCESSING

POLICIES IN HUMAN ACTION RECOGNITION ACCURACY (%)

6) Comparisons of Different Multi-Modal Processing
Policies: In order to be identical to our preliminary work [18],
the ablation analyses above are all obtained by optimizing the
pseudo multi-task learning task with the conventional separated
learning policy (MTL w/o ML) in Fig. 6(c). In this section,
we will compare it with other multi-modal processing policies,
including feature summing, feature concatenating, and the pro-
posed multi-task learning paradigm with mutual learning policy
(MTL w/ ML), also the variants that contain either position or
velocity feature are compared. Table X shows all multi-modal
fusion policies are superior to single feature methods because
they contain more input information. And our pseudo multi-task
learning policies perform better than conventional feature sum-
ming and feature concatenating policies because concatenated
feature branch can obtain additional guide from single-feature
branches in the MTL paradigm. Benefiting from the collabora-
tive learning between different feature branches, the proposed
multi-task learning method with mutual learning policy achieves
the best performance on both datasets. It should be noted that the
proposed pseudo multi-task learning policy with mutual learn-
ing is not specific for this task, it is potential to be generalized
to process other tasks that with multiple feature modalities.

7) Influence of Mutual Controlling Parameter: We explore
the effect of key parameter λ in Eq.22, which controls the influ-
ence of mutual policy during the multi-task learning. The results
in Fig. 9 show the optimal performances are achieved at a mid-
dle value of mutual controlling parameter (λ = 0.1). When the
parameter λ is small, the performance is relatively low because
individual branches in the network obtained limited collabora-
tive guiding from other branches. Besides, when the parameter
λ is too large, it is even harmful for the multi-task learning.
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Fig. 9. The influence of mutual controlling parameter λ towards action recognition accuracies on the NTU RGB+D dataset and the N-UCLA dataset.

TABLE XI
COMPARISONS OF THE MODEL COMPLEXITY, INFERENCE EFFICIENCY, AND

RECOGNITION ACCURACY ON THE NTU-CV DATASET

[† ]The #Params and #FLOPs are calculated from our reproduction
(https://github.com/huguyuehuhu/HCN-pytorch).
[*]The #Params and #FLOPs are calculated from the official released code.

In Fig. 9, we can see that the performances of λ = 1 are worse
than conventional separated learning policy (λ = 0). It is prob-
ably because a large mutual loss term also has side effect to
force the branches to produce similar features that will reduce
diversity. Therefore, at a middle controlling parameter the model
can achieve a proper balance between the mutual learning and
separated learning.

D. Model Complexity and Inference Efficiency

In this section, we study the model complexity and inference
efficiency of the proposed framework. We report two metrics
on the NTU-CV dataset for comparing, including the number
of network parameters (#Params) and the number of forward
floating-point operations (#FLOPs). Since most of the previ-
ous approaches didn’t contain the analysis of model complexity
and inference efficiency, we calculate the two metrics of recent
methods [13], [14], [51] that have publicly available codes. The
results are shown in Table XI. Note that a 64-frames action video
is used to calculate #FLOPs in all methods for fair comparing the
inference efficiency. For the recognition performance, we adopt
the accuracies reported in original papers which were obtained
with 300-frames [14], [51] or 32-frames [13] action videos.

For one-stream framework, our SLnL+rFA_pos using only po-
sition information of joints has comparable mount of parameters
with the state-of-the-art methods Js-AGCN [51] and is slightly
faster than it. Although our SLnL+rFA_pos is a little more com-
plex and slower than HCN [13] and ST-CGN [14], its recogni-
tion accuracy is much better than them. Finally, compared to the
state-of-art two-stream recognition model 2s-AGCN [51], our
SLnL+rFA+ML achieves better performance with comparable
model parameters and slightly lower computation burden.

V. CONCLUSION

In this work, we proposed a novel model SLnL-rFA to
extract synchronous detailed and semantic information from
multi-domains for skeleton-based action recognition. The SLnL
synchronously extracts local details and non-local semantics in
the spatio-temporal domain. The rFA adaptively selects discrim-
inative frequency patterns, which sheds a new light to exploit
information in the frequency domain for skeleton-based action
recognition. In addition, we proposed a novel soft-margin fo-
cal loss, which can encourage intrinsic margins in classifiers
and conduct adaptive data selection. Furthermore, we also pro-
posed to put the multi-modal features processing under a pseudo
multi-task learning paradigm and proposed a mutual learning
policy to optimize the sub-tasks collaboratively. Extensive ex-
perimental results on four widely used datasets have shown the
superiority of the proposed approach in comparison with other
state-of-the-arts methods.
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