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Abstract
Despite the remarkable performance achieved by DNN-based object detectors, class incremental object detection (CIOD)
remains a challenge, in which the network has to learn to detect novel classes sequentially. Catastrophic forgetting is the main
problem underlying this difficulty, as neural networks tend to detect new classes only when training samples for old classes
are absent. In this paper, we propose the Replay-and-Transfer Network (RT-Net) to address this issue and accomplish CIOD.
We develop a generative replay model to replay features of old classes during learning of new ones for the RoI (Region of
Interest) head, using the stored latent feature distributions. To overcome the drastic changes of the RoI feature space, guided
feature distillation and feature translation are introduced to facilitate knowledge transfer from the old model to the new one.
In addition, we propose holistic ranking transfer, which transfers ranking orders of proposals to the new model, to enable the
region proposal network to identify high quality proposals for old classes. Importantly, this framework provides a general
solution for CIOD, which can be successfully applied to two task settings: set-overlapped, in which the old and new training
sets are overlapped, and set-disjoint, in which the old and new tasks have unique samples. Extensive experiments on standard
benchmark datasets including PASCAL VOC and COCO show that RT-Net can achieve state-of-the-art performance for
CIOD.

Keywords Incremental learning · Object detection · Generative replay · Knowledge transfer

1 Introduction

Object detection is a fundamental and challenging prob-
lem in computer vision. Various detection methods [9, 10,
14, 16, 25, 28, 29, 36, 37] have been proposed based on
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deep neural networks [24] and have broad potential applica-
tions [6, 17, 42, 43, 50]. Despite the marked improvement
in accuracy with datasets such as PASCAL VOC [8] and
COCO [27], most of these models can only detect classes
that are fully supervised during training. A challenge for
real world applications is learning object detectors incre-
mentally, where new classes are added in multiple training
stages, while samples or labels for old classes are missing.
Catastrophic forgetting [30] is a critical problem with class
incremental learning that results in performance degrada-
tion on old classes as new classes are incrementally added.
Past studies of incremental learning can be roughly divided
into three primary families: regularization-based [21, 49],
distillation-based [3, 26, 35, 46] and replay-based meth-
ods [20, 40]. However, there are relatively few methods for
incremental object detection.

Class incremental learning is one of the most important
parts of continual learning/lifelong learning [1, 7, 31]. Intel-
ligent agents shall be designed to learn continuously (i.e.,
learn consecutive tasks without performance degeneration
on previously learned tasks) to achieve general artificial
intelligence. Therefore, algorithms developed for CIOD
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must localize and classify instances of classes sequentially
exposed to the model. Specifically, we let C denote the set of
classes that are incrementally introduced to the object detec-
tor and assume that there are a total of s sequential stages
in the learning process. In stage t , the newly added classes
Ct are a subset of C: Ct ⊂ C (such that Ci ∩ Cj = Ø, for
any i, j ≤ s). We let Xt = {xi}Nt

i=1 denote the images con-
taining annotated objects of classes Ct , and Yt = {Yi, Yi =
[y1..., ya] ∈ R

a×5}Nt

i=1 denote the annotations, where Nt is
the number of available images for stage t , Yi is the set
of labels for image xi , and a is the number of annotated
instances for image xi respectively. Each label y is a 5-
dim vector: y = [ybox, y], where the 4 elements of ybox ,
[xmin, ymin, xmax, ymax], are the bounding box coordinates
for one instance, while the last element y is the class label
(y ∈Ct ). In stage t, an object detector Dt must detect instances
of accumulated classes C1 ∪ C2... ∪ Ct , although only the
newest images Xt and annotations Yt are available.

Recently, many algorithms have been proposed for class
incremental image recognition (CIIR). However, CIOD shows
more theoretical significance than CIIR because CIOD requires
localizing and classifying objects simultaneously and incre-
mentally. The practical significance of CIOD is that CIOD
has broad applications. For example, online services (such
as online shopping and instance searching) that are equipped
with object detection models must cover the varying inter-
ests of users, making incremental learning a critical fea-
ture for a personalized and robust object detection system.
CIOD may be more useful on edge devices such as mobile
robots, self-driving cars and smartphones, which rely on
object detection for many important applications, includ-
ing vision-based grasping, autopilot and augmented reality.
These intelligent agents also have to detect objects incre-
mentally to respond to a series of changing circumstances
once deployed.

The first modern convolutional neural network [12, 22,
23] based incremental object detector, ILWCF [41], formu-
lates the incremental detection problem as a classification
with localization task on precomputed region proposals with
Fast R-CNN [9]. Using knowledge distillation [26], the
classification and box regression outputs of the old model
on the data of the new stage are preserved while learning
new classes. This method is further improved by RKT [34],
where a relation distillation loss function that aims to pre-
serve the relations of selected proposals is proposed. These
methods produce regional proposals using EdgeBoxes [51]
or MCG [33], which are slow and produce proposals of
lower quality than those generated with a modern region
proposal network (RPN). CIFRCN [13] is the first to
apply the knowledge-distillation technique to RPN, yield-
ing an end-to-end class-incremental object detector based

on Faster R-CNN. However, the experimental results of
CIFRCN are reported under a different experimental setting
from that used with ILWCF. Faster ILOD [32] is also based
on Faster R-CNN, with knowledge distillation applied to
RPN and Fast R-CNN heads and backbone features. Thus,
incrementally learning object detectors without catastrophic
forgetting remains challenging.

In this study, we propose an effective class incremental
object detector, RT-Net, based on Faster R-CNN to solve
the class-incremental object detection problem. As shown
in Figs. 1 and 2, there are two problem settings for class-
incremental object detection, depending on how to build the
incremental datasets. The first setup, which we denote as
set-overlapped, follows [41]: each training stage contains
all the images that have at least one object of a novel class
and with only the newest classes annotated. Following [13],
we also consider the set-disjoint setup: each learning stage
contains a unique set of images, whose objects only belong
to the novel classes in the current stage. Three techniques,
generative feature replay (GFR), guided feature distillation
(GFD) and holistic ranking transfer (HRT), are the primary
components of the method. Generative replay has been used
in incremental classification tasks. However, how to effec-
tively extend it to incremental detection is still unclear.
Faster R-CNN consists of three parts: a backbone for feature
extraction, an RPN for proposal generation and an FRCN
(RoI head) for proposal classification and bounding box
regression. As shown in Fig. 3, guided feature distillation
is used on the output of the backbone network to prevent
forgetting. Then, we can use generative feature replay to
replay the features of old classes for FRCN. We propose
using center loss with softmax loss for classification to
make the final feature vectors easily modeled by Gaussians
for replay. In addition, we use holistic ranking transfer to
enable the new model to distinguish high-quality propos-
als from lower ones for old classes for the set-overlapped
setting.

The contributions of this paper are as follows: (1) We
identify that the primary problem of incremental object
detection is a lack of old data, and design a generative
feature replay framework to address the problem of incre-
mental object detection. (2) We propose a guided feature
distillation method for the backbone network and a holistic
ranking transfer method for the RPN, to effectively transfer
the knowledge of the old model to the new model. (3) We
perform a thorough investigation of the components of the
proposed method and various alternatives with experimental
comparisons. (4) We experimentally demonstrate that RT-
Net can achieve state-of-the-art performance on standard
class-incremental object detection tasks under two different
experimental settings.
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Fig. 1 Set-overlapped setting for class incremental object detection.
In stage t the images in the training split that have any instances of
a novel class will be used for training, in which some images may
have been used in earlier stages. So the training images may con-
tain instances from the old classes, which are not annotated. During

testing, evaluation is based on all observed classes so far, with
testing images that have any instances of an old or new class.
Blue/green/brown/yellow boxes are annotations for new classes in
stages 1-4, respectively. Red boxes: instances of old or future classes
with no annotations

2 Related work

This study considers two major research topics: object
detection and class incremental learning.

2.1 Object detection

State-of-the-art object detection models can be divided
into two-stage and one-stage methods. Two-stage detectors
first extract class-agnostic region proposals of the potential
objects and then conduct classification and box regres-
sion. Fast R-CNN [9] uses precomputed proposals, which is

time-consuming. Faster R-CNN [37] introduces a region
proposal network (RPN) that shares features with the detec-
tion network and thus enables nearly cost-free proposal
generation. Cascade R-CNN [2] uses multiple detection
heads with increasing IoU thresholds to iteratively refine the
detection results. In contrast, the one-stage detectors inte-
grate the two stages into one unified process. YOLO [36]
can predict bounding boxes and class probabilities directly
from the full images. SSD [29] extends YOLO with mul-
tiscale feature maps and adopts diverse default boxes for
various object shapes. RetinaNet proposes focal loss [28]
to deal with dense detections on multiscale feature maps.

Fig. 2 Set-disjoint setting for class incremental object detection. Each
learning stage contains a unique set of training images, whose objects
only belong to the novel classes in the current stage. Testing is also

different from the set-overlapped setting in which images containing
instances of unseen classes are excluded
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Fig. 3 System overview. The green line shows the ranking transfer process; the red line shows the generative feature replay; and the blue line
shows the feature distillation

General object detection has been thoroughly studied, while
incremental learning of object detectors still remains an
open problem.

2.2 Class incremental learning

Catastrophic forgetting [30] is a core problem with class-
incremental learning. Existing studies of incremental learn-
ing can be roughly divided into three primary groups:
regularization-based, distillation-based and replay-based
methods. As the pioneer work of regularization-based meth-
ods, elastic weight consolidation (EWC) uses the Fisher
information guided regularization technique to protect the
most important weights for past tasks [21]. Distillation-
based methods, such as LwF [26], use probability distilla-
tion to make the predictions of the new model similar to
those of the old network. Finally, replay-based methods use
a generative model to sample synthetic data from previously
learned distributions [20, 40]. However, there are relatively
few methods for incremental object detection learning. To
our knowledge, ILWCF [41], RKT [34], Faster ILOD [32]
and CIFRCN [13] are the most relevant methods that have
been investigated in prior studies for incremental object
detection.

3Methodology

3.1 Problem formulation and system overview

The proposed RT-Net is designed based on the Faster R-
CNN framework, which consists of three parts: a backbone
B, an RPN R and an FRCN F . We first review the forward
process of Faster R-CNN.

Faster R-CNN An image x will first be forwarded through
the backbone, and the image feature maps, denoted as
f, can then be determined. Based on f = B(x) and
a set of anchor boxes A, RPN then performs several
additional convolutions to determine the initial proposals,
which are l bounding boxes Pa = {ra

1 , ra
2 ..., ra

l }, with
foreground/background scores {sr1, sr2..., srl } for the softmax
function or objectness scores {sr

1, sr
2..., sr

l } for the sigmoid
function. After non-maximum suppression (NMS) and
eliminating low-confidence boxes, the final proposal set P
contains m proposals {r1, r2..., rm}. With such proposals,
the image feature will be fed to the RoI-pooling layer
to obtain the corresponding RoI features {u1,u2...,um}.
Then, such feature maps are fed to FRCN, which produces
the final feature vectors {v1, v2..., vm}. The final outputs



RT-Net: replay-and-transfer network for class incremental object detection

sorted class index
10 20 30 40 50 60 70 80

nu
m

be
r o

f i
ns

ta
nc

es

0

1000

2000

3000

4000

5000 old classes
classes of last stage

class IDs in COCO
10 20 30 40 50 60 70 80

nu
m

be
r o

f i
ns

ta
nc

es

104

0

1

2

3

4 stage 1
stage 2
stage 3
stage 4

Fig. 4 Instance distributions with the COCO dataset. a Instance
distribution of the last learning stage for a 75+1+1+1+1+1 set-
overlapped incremental detection setting. Class indexes are sorted by

available instance numbers. b Instance distribution of 4 stages for a
20+20+20+20 set-disjoint setting. Class indexes are sorted by COCO
IDs

of FRCN are m bounding boxes {bb
p

1 , bb
p

2 ..., bb
p
m} with

multiclass scores {sbb
1 , sbb

2 ..., sbb
m }, respectively. Then, the

system applies class-wise NMS after each proposal is
assigned to a class with the largest score and obtains
final q boxes Pbb = {bb1, bb2..., bbq} with corresponding
assigned class scores Sbb = {sbb

1 , sbb
2 ..., sbb

q }.

RT-Net for Incremental Object Detection For each new
stage t + 1, nnew

t+1 new classes are added for learning.
The detector must localize all instances of nt+1 = nt +
nnew

t+1 classes seen thus far. We let Gnew denote the set of
ground truth instances for new classes in image x. For the
set-disjoint setting, all old images are excluded from the
training set. However, for the set-overlapped setting, some
old images are available. We also let Gold denote the set
of pseudo ground truths for old classes in x, which serve
as the substitute for true annotations. These pseudo ground
truths are calculated by thresholding the detection results
of the training set of stage t , with thresholds computed and
saved from stage t . The method to compute such a thresh-
old for every class after training of stage t is introduced in
Algorithm 1. The data distributions of old/new classes are
different for the set-overlapped and set-disjoint settings. As
shown in Fig. 4a, the numbers of instances for each class
that can be used during the last training stage are plotted.
Despite some classes with large instance numbers, most old
classes have only a few samples available. This problem is
even worse for the set-disjoint setting because images con-
taining instances of old classes are all excluded. Figure 4b
shows that the data distributions along the learning stages
are imbalanced. Based on such observations, we thus pro-
pose using generative replay to mitigate the lack of data and
data imbalances during incremental object detection. Specif-
ically, a generator G will be added to the Faster R-CNN
framework to replay the RoI features. Thus, the RT-Net M
consists of four components M = {B, R, F, G}.

In stage t = 1, the Faster R-CNN {B1, R1, F1} is first
trained with images X1. After regular training, the generator
G1 is added, and a new adversarial head is added to FRCN
to serve as the discriminator, as in generative adversarial
nets (GANs) [11]. The generator is then trained with Faster
R-CNN for several epochs. Then, the RoI features for
classes n1 can be replayed by the generator G1. In stage
t = 2, we have a new set of images X2 with instances
belonging to new classes or a mixture of new and old classes
(with no annotations). The new network M2 is initialized
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from M1. To make RoI features consistent with the last
stage, guided feature distillation (GFD) is deployed on the
backbone network. High-quality proposals are important to
detect instances of old classes; thus, we also design effective
knowledge transfer methods for the RPN. {B2, R2, F2} can
then be trained effectively. After training of {B2, R2, F2},
although knowledge transfer techniques are applied to the
backbone, this component in M1 and M2 are different;
thus, the two sets of RoI features computed using old and
new models, U1 and U2, may lie in different feature spaces
and are not compatible with each other. Inspired by [18], we
propose transforming features U1 to the same feature space
as U2. We train a feature adaptation network T2 to map U1

to the same space as U2 and retrain the FRCN part with
the generator. Then, we determine the newest trained model
M2 = {B2, R2, F2, G2}. We follow the same procedure
for subsequent stages; the difference is that initial training
for Ft+1 also uses the RoI features generated by Gt . The
training process for stage t + 1 is shown in Fig. 3.

3.2 Generative feature replay for FRCN

We use feature replay with the RoI features to prevent
forgetting in the FRCN and to mitigate data imbalance
between the new and old classes. A straightforward choice
is using conditional GAN (cGAN) [5], which consists of a
class-conditional generator G(z, c) that is associated with a
class-conditional discriminator D(u, c). Typically, c is the
class label and sampled from the categorical distribution Pd ,
and z is random noise sampled from a normal distribution.
The generator and discriminator are trained to optimize the
following adversarial objective:

LGAN(G, D) = E
c∼Pd

[
E

u∼dc

[logD(u, c)] + E
z∼N (0,I )

[log(1 − D(G(z, c), c))]
]

. (1)

The primary drawback of using standard cGAN is that the
sampled normal distribution and class-conditional signals
have no connection with the true final feature distributions.
Sampling randomly makes the quality of certain replayed
RoI features uncontrollable. To solve this problem, we
propose using Gaussian Mixture (GM) models to unify the
distributions for sampling vectors and posterior distributions
of final features.

Given a training set with nt + 1 classes including a back-
ground class, for N final feature vectors of proposals with
class labels {(vj ; yj ), 1 ≤ j ≤ N}, the Softmax loss is
defined as:

Lsof tmax = − 1

N

N∑
j=1

log
exp(wT

yj
vj + byj

)∑nt+1
i=1 exp(wT

i vj + bi)
. (2)

Different from the softmax loss, we may further assume that
the final feature vector v follows Gaussian Mixture distri-
butions. Under such an assumption, the classification loss
can be computed as the cross-entropy between the posterior
probability distribution and the one-hot class label as:

(3)

where is the indicator function, which equals 1 if yj

equals i, or 0 otherwise; μi and �i are the mean and
covariance of class i in the feature space; and p(i) is
the prior probability of class i. Typically, optimizing the
classification loss only cannot directly drive the final feature
vectors toward the expected Gaussian mixture distributions.
To solve this problem, a likelihood regularization term for
measuring how well the training samples fit the assumed
distributions is used [44]. However, we cannot assume that
the background class in object detection also follows a
Gaussian distribution. Therefore, we only consider positive
samples in this case:

(4)

Finally the GM loss for object detection Lgm is defined as
follows:

Lcls gm = Lce+gm + λLlkd , (5)

where λ is a nonnegative weighting hyperparameter that is
set to 0.1. Although GM loss can connect the distributions
of final feature vectors and sampling prior for cGAN, we
propose using a much simpler method to achieve similar
results, center loss [45] for positive samples, which is
defined as follows:

Lcenter = 1

2Npos

Npos∑
j=1

‖vp
j − μyj

‖2
2. (6)

Therefore, the classification loss is defined as:

Lcls cen = Lsof tmax + Lcenter . (7)

We let Lcls denote the general classification loss referring to
Lcls gm or Lcls cen. We use Lcls cen in the experiments. With
the learned classification model, the class centers {μi}nt

i=1
and covariance matrices {�i}nt

i=1 can be calculated, and
the final features can be modeled with Gaussian mixture
distributions. To achieve replay, we propose training a
generator G and discriminator D that share layers with
FRCN except an independent head to effectively replay the
features.
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Another problem of replay for object detection is how
to set the box regression targets for the replayed features.
To solve this problem, we propose to sample normalized
coordinate shifts � as the second conditional signal. For
every item g in ground truth set G of image x, coordinate
shifts that achieve IoU above 0.5 with g will be sampled.
Thus, the sampled coordinate shifts are also the box
regression targets. Negative samples can then be generated
by shifting positive samples until the IoUs are below 0.5 and
applying simple feature-padding. The FRCN and generator
can be trained using the following loss:

Ladv = E
c∼Pd

[
E

up∼dc

[logD(up)] + E
z∼Nc,�∼d�

[log(1 − D(G(z, �)))]
]
, (8)

where z is sampled from the Gaussian distribution of class
c. We let ug and ugen denote the feature maps for the over-
lapped region between the ground truth features and the gen-
erated RoI features. Lover is defined as the L2 loss between
ug and ugen. We also let Lrec denote the reconstruction loss
(L2 loss) for real RoI features u and G(F(u)). The full loss
for FRCN F and generator G is:

Lf ull = Ladv + Lcls + Lbbox + Lover + Lrec, (9)

where Lbbox is the smooth L1 loss [9] for real and generated
RoI features. Classification loss Lcls is also computed using
both real and generated RoI features. For instances of
old classes, the class labels and targets for bounding box
regression are computed using the pseudo ground truths
because there are no annotations for them. The output heads
of FRCN are reset before adversarial learning to keep the
joint training of generator and FRCN stable.

Determining the Ratio of Replayed Samples The criterion
for determining the ratio of replayed samples is simple. As
the numbers of annotated instances and the average numbers
of positive samples associated with each instance for classes
in each stage can be calculated, these numbers are stored
and used to compute the ratios of replayed positive samples
for old classes in the new learning stage. Specifically, in
stage t , for any old class c with na annotated instances and
np positive samples per instance, max(na ∗ np, na

min ∗ np)

positive samples will be replayed in each epoch. The param-
eter na

min is set to 200 to deal with insufficient training
data. The positive samples within a minibatch are randomly
picked from the set of C1 ∪C2...∪Ct according to the sample
ratios.

3.3 Guided feature distillation for backbone network

To make feature replay feasible in incremental object detec-
tion, feature distillation should be deployed on the backbone

network to guarantee that the RoI features are consistent
with previous stages when learning new classes. We propose
using guided feature distillation (GFD), to compute spatial
attention weights from feature maps and Gold . Formally, the
GFD loss is:

Lgf d = 1

2Nf

W∑
i=1

H∑
j=1

wij

C∑
c=1

(f new
ijc − f old

ijc )2, (10)

where Nf = C
∑W

i=1
∑H

j=1 wij , W , H , and C are the
width, height, and number of channels of the feature maps,
respectively. As shown in Fig. 5, the spatial attention weights
are computed first using summation of all channels of the
feature maps: wij = ∑C

c=1 |f old
ijc |2, and then normalization:

wij = wij /wmax . Here wmax is the maximum value of the
weights. We then use Gaussian-like kernels to reweight fore-
ground regions of old classes to protect the informative
feature regions from drastic changes. Specifically, for a
pseudo ground truth from Gold with coordinates [xmin,

ymin, xmax, ymax] on the feature maps and class score s, the
weights for this region can be rewritten as:

wij = s ∗ exp
−(

(i−cx )2

2σ2
x

+ (j−cy )2

2σ2
y

)

, (11)

where σx = (xmax − xmin)/2, σy = (ymax − ymin)/2,
cx = (xmax + xmin)/2 and cy = (ymax + ymin)/2. Because
a pixel may be located in the overlapped region of multiple
RoIs, only the highest weight computed according to any
single RoI is used. Using different distillation weights for
old RoIs and other regions, the knowledge of the old model
can thus be effectively transferred to the new model without
harming the learning of the instances of new classes.

3.4 Feature transformation

Feature transformation is applied after training Faster
R-CNN in stage t > 1. With network Mt initialized
from Mt−1, the backbone, RPN and FRCN are trained
with regular losses for instances of new classes and
with corresponding guided feature distillation, holistic
ranking transfer and feature replay methods for old classes.
Although feature distillation is used for backbone Bt , its
parameters may be different from the old one Bt−1. Thus,
the two sets of RoI features, Ut and Ut−1, lie in different
feature spaces and are not compatible with each other.
Therefore, we train a feature adaptation network Tt to
map Ut−1 to the same space as Ut . Once the feature
transformation network is trained, we create a new feature
set U trans

t by transforming the existing features generated
from the generator Gt−1 to the same feature space as Ut .
Then, the FRCN can be trained using the combined features
U trans

t and Ut . When training for FRCN is completed, we
train the conditional generator together with FRCN using
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Fig. 5 Guided Feature
Distillation. Green boxes are
annotations for new classes. Red
boxes are pseudo ground truths
detected by the old model. The
spatial attention map is
computed using the output
feature maps of the backbone
network, demonstrating diverse
importance weights of spatial
regions for the old model.
Another weight map is
computed to highlight the old
class regions. The final weight
map is a combination of these 2
maps and is used to protect
important features from drastic
changes during learning new
classes

U trans
t and Ut for another several epochs, yielding the new

generator Gt .
The feature transformation is achieved by learning a

transformation function Tt : R
d → R

d , which maps the
output of the previous RoI pooling layer to the current RoI
feature space using the current task images Xt . We let Upair

denote the set of feature pairs (u,u) ∈ Upair . Given an
image x ∈ Xt and region r , u corresponds to the RoI feature
extracted with RoIpooling(Bt−1(x), r), while. Conversely,
u corresponds to the feature representation extracted with
the model in the current stage (i.e., RoIpooling(Bt (x), r).
The RoI features used belong to the positive samples w.r.t.
new ground truths Gnew, and pseudo ground truths of old
classes Gold in the set-overlapped setting.

When training the feature transformation network T , we
use the following loss function:

Lft(u,u) = Lsim(u, T (u)) + Lcls(T (u), y)

+Lbox(T (u), ybox), (12)

where y and ybox are the corresponding class label and box
regression targets for u. The first term Lsim(u, T (u)) is the
L1 loss, which encourages the adapted feature descriptor
T (u) to be similar to u, which is its counterpart that is
extracted from the updated network. The purpose of this
method is to transform features between different feature
spaces, while feature distillation can prevent features from
drifting markedly in the feature space. The second loss
term Lcls(T (u), y) is the cross-entropy loss computed by
feed the transformed features to the FRCN. This term
encourages transformed features to belong to the correct
class y. Additionally, Lbox(T (u), ybox) is the smooth L1

loss, which encourages transformed feature descriptors to
achieve similar results for regression of box coordinates.

3.5 Holistic ranking transfer for RPN

In the set-overlapped setting of incremental detection, some
old images may be reused for training during new stages.
It is appealing to transfer the knowledge of old RPN to the
new one. Instead of knowledge distillation, we use listwise
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ranking loss [4, 47] to achieve knowledge transfer for RPN;
specifically, this method is used to transfer the ranking
orders of proposals generated by old models to the newest
model.

We use π to denote a permutation of the list (with
length k) indexes. Formally, we denote the candidate region
proposals as R. Then, the probability of a specific permuta-
tion π is given as:

P(π |R) =
k∏

i=1

exp
[
S(rπi

)
]

∑k
j=i exp

[
S(rπj

)
] , (13)

where S(r) is a score function based on the similarity
between proposal r and pseudo ground truth g:

S(r) = −α‖sr − srg‖β

2 , (14)

α and β are sharpening parameters to make the margin
between samples large sufficient for optimization. In this
study, we use weighted average scores from the RPN and
FRCN of the old model to compute the transfer targets for
any proposal r (including g): srold = sr ∗ 0.7 + (sbb, 1 −
sbb) ∗ 0.3, while for the new model, the output of Softmax
is used directly: srnew = sr . If using the sigmoid function
as the objectness score function, for the old model, the
weighted average score from the RPN and FRCN is used:
sr
old = sr ∗0.7+sbb ∗0.3; and we directly use the objectness

score: sr
new = sr for the new model. Cross entropy loss for

permutations Π is used as the loss function:

Lhrt (Rnew, Rold) = −
∑
π∈Π

P (π |Rold)logP (π |Rnew). (15)

As shown in Fig. 6, this method is named as holistic
ranking transfer because it uses the outputs from both the
RPN and FRCN of the old model. For 2-stage detectors,
the output of the second stage provides a more accurate

evaluation on the quality of the bounding boxes. The
sampling method for ranking transfer in stage t + 1 is
summarized in Algorithm 2. When training, randomly
selected Nl = 8 lists with k = 8 proposals (1 each from P1-
P4, and another 4 from P5) each are used. The full loss for
training RPN is the summation of holistic ranking transfer
loss for old classes, regular objectness loss for new classes,
and box regression loss for all classes:

LRPN = Lold
hrt + Lnew

objectness + Lbbox . (16)

As shown in Fig. 7, the proposed method can effectively
transfer the ranking knowledge of the old model to the new
one, where high-quality proposals are scored higher than
low-quality proposals.

4 Experiments

4.1 Datasets

We evaluate the proposed method using two detection
benchmarks: PASCAL VOC 2007 and COCO 2014. VOC
2007 contains 5K images in the trainval split and 5K images
in the test split for 20 object classes. Conversely, COCO
has 80K images in the training set and 40K images in the
validation set across 80 object classes. We use the standard
mean average precision (mAP) of IoU = 0.5 for VOC 2007
and mAP weighted across different IoUs from 0.5 to 0.95
for evaluation with COCO. Evaluation with VOC 2007 is
performed on the test split (i.e., the train and val splits
are used for training), while for COCO, 5K images in the
minival subset from the validation set are used for testing
(i.e., the train split and remaining images in the val split are
used for training).

Fig. 6 Holistic ranking transfer.
The red boxes are pseudo
ground truths detected by the
old model. Proposals are
grouped and lists of proposals
are sampled for knowledge
transfer from the old model
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Fig. 7 Results of holistic
ranking transfer. All proposals
resized to the same size for
visualization. When testing, our
ranking transfer method can
preserve the ranking orders of
old models for high quality
proposal generation

4.2 Implementation details

We use the standard implementation for the ResNet-based
Faster R-CNN network [38]. ResNet-50 and ResNet-101
[15] pretrained on ImageNet [39] are used as the backbones
in different experimental settings, following [13, 34]. The
architecture of the generator is similar to [48], with
1 deconvolution block and 2 convolution blocks (using
ResNet blocks). Additionally, the transformation network
is a simple stack of 3 convolution blocks. We set the
training epochs and learning rates of different learning
stages following [32]. The parameters α and β in Eq. 14 are
both set to 3.

4.3 Comparison with state-of-the-arts

The set-overlapped setting is the most popular experimental
setting for incremental object detection. To compare fairly
with the state-of-the-art methods [13, 34], we use their set-
tings and perform incremental object detection experiments
in 4 stages. We split the 20 classes in the VOC dataset into
4 groups with 5 classes added every stage. Similarly, with
the COCO dataset, 20 new classes are added every stage.
For the set-overlapped setting, we compare the proposed
method with ILWCF [41], RKT [34], ILWCF Faster [32]
and Faster ILOD [32]. We use the reported results from [32,

Table 1 Results (mAP %) on VOC dataset with 5 new classes in every
stage, under the set-overlapped setting. The best results are highlighted
in bold

5 10 15 20

ILWCF [41] 57.6 55.9 53.7 47.0

RKT [34] 57.6 56.8 56.9 52.9

EdgeBoxes + GFD + GFR-FRCN 57.8 57.4 57.1 53.4

ILWCF Faster [32] 69.6 58.7 51.5 49.3

Faster ILOD [32] 69.6 58.5 53.8 49.7

GFD + Faster ILOD 69.6 58.8 54.9 50.6

GFD + HRT-RPN + KD-FRCN 69.6 58.9 55.4 51.8

GFD + KD-RPN + GFR-FRCN 69.7 59.1 56.6 53.2

Ours (RT-Net) 69.7 59.4 57.4 53.9

34]. As shown in Table 1, compared with ILWCF and RKT,
the proposed method performs much better in terms of mAP.
However, these two methods do not use modern RPN to
generate proposals. Therefore, for fair comparison, we take
ILWCF Faster and Faster ILOD as the baselines. The final
mAP improvements over ILWCF Faster and Faster ILOD
are 4.6% and 4.2%, respectively. We also combine baseline
methods with components of the proposed method: gener-
ative feature replay (GFR), holistic ranking transfer (HRT)
and guided feature distillation (GFD). In this study, fea-
ture transformation is tied to generative feature replay if
not specified. With knowledge distillation denoted as KD,
we implement GFD + Faster ILOD, GFD + KD-RPN +
GFR-FRCN, and GFD + HRT-RPN + KD-FRCN. We also
implement EdgeBoxes + GFD + GFR-FRCN. The exper-
imental results with the VOC dataset in Table 1 show
that the proposed method outperforms its counterparts for
each stage. The proposed GFD can improve Faster ILOD
by 0.9% final mAP, indicating that GFD outperforms FD.
Compared with ILWCF and RKT, EdgeBoxes + GFD +
GFR-FRCN achieve much better performance. GFD + KD-
RPN + GFR-FRCN also outperforms GFD + Faster ILOD,
Faster ILOD and ILWCF Faster by 2.6%, 3.5% and 3.9%,
respectively, indicating that the proposed GFR method is
effective for FRCN. GFD + HRT-RPN + KD-FRCN also
outperforms GFD + Faster ILOD, which verifies that the
proposed HRT method is effective for RPN.

We also perform experiments with the COCO dataset,
and the results are shown in Table 2. A marked improvement
in mAP is achieved compared to ILWCF and Faster ILOD
during the learning stage. The final improvements over
ILWCF and Faster ILOD are 5.9% and 2.6%, respectively.
Using Faster ILOD as a reference, the three components
of the proposed method, GFD, HRT and GFR, contribute
0.6%, 0.7% and 1.3% mAP gains, respectively. The initial
mAP gains of the proposed method are small, which verifies
that the proposed method is effective for class incremental
object detection, not for traditional fully supervised object
detection.

Qualitative results on COCO are shown in Fig. 8, which
indicates that the proposed method can effectively detect
newly learned classes, such as persons in stage 3 and
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Table 2 Results (mAP %) on COCO dataset with 20 new classes
in every stage, under the set-overlapped setting. The best results are
highlighted in bold

20 40 60 80

ILWCF [41] 22.6 20.3 18.6 16.4

Faster ILOD [32] 29.2 26.3 22.5 19.7

GFD + Faster ILOD 29.2 26.5 22.9 20.3

GFD + HRT-RPN + KD-FRCN 29.2 26.7 23.9 21.0

GFD + KD-RPN + GFR-FRCN 29.3 26.9 24.2 21.7

Ours (RRT) 29.3 27.1 24.6 22.0

Ours (w/o FT) 29.3 27.3 24.3 21.4

Ours (Gaussian) 29.3 26.9 24.5 21.6

Ours (Vanilla) 29.2 26.7 24.2 20.5

Ours (RT-Net) 29.3 27.8 25.3 22.3

umbrella in stage 4, without forgetting old tasks of detecting
boats or chairs. We also perform experiments on 2-stage
incremental learning because it is the primary task setting

Table 3 Results (mAP %) on VOC dataset with 10 new classes in
every stage, under the set-overlapped setting. The best results are
highlighted in bold

10 20

ILWCF [41] 65.8 62.4

RKT [34] 65.8 63.1

ILWCF Faster [32] 73.9 63.1

Faster ILOD [32] 73.9 63.2

OWOD [19] 73.9 64.6

Ours (RT-Net) 74.0 67.9

in OWOD [19]. As shown in Table 3, the proposed method
also outperforms state-of-the-art methods by a margin.

We perform experiments to evaluate the proposed
method on extreme imbalanced incremental object detec-
tion, which is a 6-stage learning process with a base model
trained on most of the classes in stage 1 and 1 new class
added each time for the following stages. Experiments
are performed on the VOC dataset with a 15+1+1+1+1+1

Fig. 8 Results of the 4-stage
set-overlapped class incremental
object detection on COCO
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Table 4 Results (mAP %) on
VOC dataset with 1 new class
in every stage, under the
set-overlapped setting. The best
results are highlighted in bold

15 16 17 18 19 20

ILWCF [41] 70.0 66.7 63.0 61.2 60.7 60.6

ILWCF Faster [32] 73.1 68.7 67.7 64.1 60.1 58.1

Faster ILOD [32] 73.1 70.1 68.3 65.9 63.7 61.3

Ours (RT-Net) 73.2 72.3 70.4 68.9 66.4 64.3

Table 5 Results (mAP %) on
COCO dataset with 1 new class
in every stage, under the
set-overlapped setting. The best
results are highlighted in bold

75 76 77 78 79 80

ILWCF [41] 21.1 19.2 17.2 15.1 13.6 12.4

ILWCF Faster [32] 22.5 19.3 16.9 16.0 14.1 13.0

Faster ILOD [32] 22.5 21.4 19.6 17.1 15.1 13.9

Ours (RT-Net) 22.7 21.7 20.5 18.9 17.7 15.8

Table 6 Accuracies (AP %) of
old and new classes of COCO
dataset with 1 new class in
every stage, under the
set-overlapped setting. The best
results are highlighted in bold

Class/method mAP1−75 76 77 78 79 80 mAPall

C1−75/Faster ILOD 22.5 - - - - - 22.5

C1−75/Ours (RT-Net) 22.7 - - - - - 22.7

C(1−75)+76/Faster ILOD 21.2 40.3 - - - - 21.4

C(1−75)+76/Ours (RT-Net) 21.5 43.6 - - - - 21.7

C(1−75)+...+77/Faster ILOD 19.4 37.2 21.1 - - - 19.6

C(1−75)+...+77/Ours (RT-Net) 20.3 41.4 23.2 - - - 20.5

C(1−75)+...+78/Faster ILOD 16.9 34.5 17.9 22.8 - - 17.1

C(1−75)+...+78/Ours (RT-Net) 18.6 38.9 20.8 25.6 - - 18.9

C(1−75)+...+79/Faster ILOD 14.8 32.8 16.5 19.4 21.9 - 15.1

C(1−75)+...+79/Ours (RT-Net) 17.4 37.2 19.8 22.3 25.6 - 17.7

C(1−75)+...+80/Faster ILOD 13.4 31.5 15.2 17.7 18.8 42.1 13.9

C(1−75)+...+80/Ours (RT-Net) 15.3 36.0 18.4 21.1 23.5 45.8 15.8

Table 7 Results (mAP %) on
VOC dataset with 5 new
classes in every stage, under
the set-disjoint setting. The best
results are highlighted in bold

5 10 15 20

ILWCF [41] 66.3 52.0 47.0 39.3

CIFRCN [13] 63.9 57.5 50.9 48.5

FD-RPN + GFR-FRCN 64.2 60.2 52.8 49.9

GFD + FD-RPN + KD-FRCN 64.0 59.1 51.7 49.4

Ours (RT-Net) 64.2 61.7 54.4 51.8

Table 8 Results (mAP %) on
COCO dataset with 20 new
classes in every stage, under
the set-disjoint setting. The best
results are highlighted in bold

20 40 60 80

ILWCF [41] 49.2 30.2 23.2 20.9

CIFRCN [13] 58.1 31.8 26.0 22.9

FD-RPN + GFR-FRCN 58.3 32.6 27.4 23.7

GFD + FD-RPN + KD-FRCN 58.4 32.7 27.2 23.8

Ours (w/o FT) 58.5 32.9 27.5 23.8

Ours (Gaussian) 58.5 33.4 28.2 24.5

Ours (Vanilla) 58.4 33.1 27.4 24.1

Ours (RT-Net) 58.5 33.8 28.9 24.9
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setting and on the COCO dataset with a 75+1+1+1+1+1 set-
ting. For such experimental settings, after training in stage 1,
we keep the backbone fixed. Results are shown in Tables 4
and 5. Specifically, the proposed method outperforms Faster
ILOD by 3.0% mAP after learning all 6 stages on VOC.
With the COCO dataset, the proposed method achieves a
1.9% mAP gain over Faster ILOD.

Importantly, as shown in Table 6, the proposed method
performs better than Faster ILOD not only on the old
classes, but also on the newly added classes. Although the
overall accuracies are mostly determined by the old classes
as a result of the large ratio of old classes, our method
demonstrated impressive incremental learning capability. In
this experimental setting, large amount of training data for
the base classes is enough to train a powerful backbone
network. So the backbone network is fixed for faster
training in the incremental stages. The proposed RT-Net
can achieve similar results with the backbone network
finetuned using guided feature distillation, e.g. 15.9% final
mAP after learning all the classes. With generative feature
replay, the FRCN can be trained in a regular manner
for both the old classes and the newly added ones. In
addition, guided feature distillation and holistic ranking
transfer can transfer the knowledge of old classes to the
new model without harming the learning of new classes.

On the contrary, vanilla distillation based methods suffer
from performance tradeoffs between the old classes and the
new ones.

For the set-disjoint setting, we compare the proposed
method with ILWCF and CIFRCN. With feature distillation
denoted as FD as in [13], we also implement GFD +
FD-RPN + KD-FRCN and FD-RPN + GFR-FRCN. We
show the experimental results with VOC and COCO in
Tables 7 and 8, respectively. Compared with CIFRCN,
the proposed method achieves much better performance in
terms of average mAP. The mAPs in the final stage are
3.3% and 2.0% higher than those of CIFRCN for VOC and
COCO, respectively. For this setting, we cannot use ranking
transfer for RPN because we cannot access any past images
used in earlier stages. Therefore, the proposed method in
this scenario refers to GFD + FD-RPN + GFR-FRCN.
Results also show that by combining GFR or GFD with
CIFRCN, we can achieve large mAP improvement over the
baseline method, which verifies the effectiveness of the two
components. Qualitative results with COCO are shown in
Fig. 9. Because old images are never used for training in
the set-disjoint setting, the baseline methods suffer from
catastrophic forgetting. However, the proposed method can
effectively detect old classes, such as sheep and boats in
stage 2, birds in stage 3 and chairs in stage 4.

Fig. 9 Results of the 4-stage
set-disjoint class incremental
object detection on COCO
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4.4 Ablation Study

Loss Functions for Feature Embedding The primary con-
tribution of this study is the generative replay framework.
The proposed generative replay method samples from the
distributions of final feature vectors under the assumption
of Gaussian mixture distributions. We thus perform abla-
tion experiments about the choice of loss functions for
feature embedding. Specifically, we compare the proposed
center loss-based classification loss with Gaussian mixture
loss and vanilla softmax loss. Results are shown in Tables 2
and 8, where 0.7% and 1.8% final mAP gain can be
achieved by the proposed method compared with Gaussian
loss and vanilla softmax loss for the 4-stage set-overlapped
incremental detection. These results are consistent for the
set-disjoint setting, where 0.4% and 0.8% absolute improve-
ments on mAP are achieved. These results verify the effec-
tiveness of the proposed design of loss functions for final
feature embedding.

Feature Transformation Feature transformation is an impor-
tant component in the proposed framework. As shown in
Tables 2 and 8, the mAPs for the set-overlapped setting
and set-disjoint setting at the end of learning all 4 stages
degrade by 0.9% and 1.1% without feature transformation,
respectively. Evolution of the backbone network results in a
change in the RoI feature space, although feature distillation
is deployed on the backbone network. Therefore, feature
transformation is an important component that benefits
generative feature replay.

Knowledge Transfer Methods for RPN We compare the pro-
posed holistic information-guided ranking transfer (HRT)
with RPN-guided ranking transfer (RRT) and knowledge
distillation (KD). As shown in Table 2, compared with
the proposed method using HRT, the mAPs of using RRT
and GFD + KD-RPN + GFR-FRCN drop 0.3% and 0.6%,
respectively, indicating that both ranking transfer and holis-
tic guidance contribute to the overall performance, while
holistic guidance is more important.

5 Conclusion

In this study, we developed RT-Net, an effective class-
incremental object detector. The key contribution of this
study is the design of a novel generative feature replay
method that can mitigate the lack of old training data for
a faster R-CNN-based incremental object detector. Because
feature replay works well when the knowledge stored in
the backbone can be preserved, we used guided feature dis-
tillation to achieve this. An effective knowledge transfer

method for RPN, holistic ranking transfer, was also devel-
oped to allow the RPN to distinguish high-quality proposals
from lower proposals for old classes. Experiments per-
formed on two incremental object detection benchmarks
demonstrate the effectiveness of the proposed framework.
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