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Dynamic Strip Convolution and Adaptive
Morphology Perception Plugin for
Medical Anatomy Segmentation

Guyue Hu, Yukun Kang, Gangming Zhao, Zhe Jin, Chenglong Li, and Jin Tang

Abstract— Medical anatomy segmentation is essential
for computer-aided diagnosis and lesion localization in
medical images. For example, segmenting individual ribs
benefits localizing the lung lesions and providing vital
medical measurements (such as rib spacing) for gener-
ating medical reports. Existing methods segment shape-
different anatomies (such as striped ribs, bulky lungs, and
angular scapula) with the same network architecture, the
morphology heterogeneity is heavily overlooked. Although
some shape-aware operators like deformable convolution
and dynamic snake convolution have been introduced to
cater to specific object morphology, they still struggle
with orientation-varying strip structures, such as 24 ribs
and 2 clavicles. In this paper, we propose a novel convo-
lution plugin (DSC-AMP) for medical anatomy segmenta-
tion, which is comprised of a dynamic strip convolution
(DSC) operator and an adaptive morphology perception
(AMP) strategy. Specifically, the dynamic strip convolu-
tion customizes gradually varying directions and offsets
for each local region, achieving dynamic striped receptive
fields. Additionally, the adaptive morphology perception
strategy incorporates insights from various shape-aware
convolutional kernels, enabling the model to discern and
integrate crucial representations corresponding to hetero-
geneous anatomies. Extensive experiments on two large-
scale datasets demonstrate the effectiveness and superi-
ority of the proposed approach for tackling heterogeneous
medical anatomy segmentation.

Index Terms— Dynamic Strip Convolution, Adaptive Mor-
phology Perception, Medical Anatomy Segmentation
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Fig. 1: Illustration of morphology-heterogeneous anatomies in
medical chest X-ray images.

MEDICAL anatomy segmentation in X-ray images plays
an important role in computer-aided diagnosis and

pinpointing abnormalities of various diseases, such as rib
fractures, pneumothoraces, and pulmonary infections [1]–[3].
As a crucial foundation for early disease detection and local-
ization, medical anatomy segmentation significantly reduces
the workload of healthcare professionals. This enables them
to prioritize patient care and treatment, thus greatly enhancing
the efficiency of the medical community.

Benefiting from the boom of deep neural networks, medical
image segmentation has achieved huge success. The pioneer
U-Net [4] utilizes an encoder-decoder structure for shape-
agnostic representation learning and mask prediction. Since
then, its CNN-based [4]–[9], transformer-like [10], [11], and
hybridized variants [12], [13] have dominated the field of
medical image segmentation. For example, nnUNet [5] au-
tomatically configures its architecture and parameters to adapt
different medical imaging datasets. TransUnet [14] integrates
Vision Transformer [15] into classical U-Net to capture global
information and long-term dependency. The latest VM-UNet
[16] combines Vision-Mamba [17] with U-Net to exploit
the great capability of establishing long-distance dependen-
cies while upholding linear complexity from the State Space
Model, achieving powerful segmentation performance.

However, conventional medical image segmentation ap-
proaches suffer from significant performance degradation
when dealing with medical anatomy segmentation since the
morphology heterogeneity has been heavily overlooked in ex-
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isting methods. Although some previous works have incorpo-
rated specific shape priors or regularization into conventional
segmentation models [18], [19], they have not tackled the
issue of heavy morphological heterogeneity. As qualitatively
illustrated in Fig. 1, each rib or clavicle exhibits an orientation-
varying striped structure, each lung displays a bulky shape,
each scapula appears flat with angular protrusions, while
the mediastinum presents an irregular angular form. Fur-
thermore, the matrix of Procruste Disparity [20] computed
from medical anatomies (see Fig. 5) also quantitatively in-
dicates the serious heterogeneity in classical medical anatomy
segmentation datasets. Therefore, different morphology-aware
receptive fields are urgently required to fit these morphology-
heterogeneous anatomies properly.

Besides, some pioneer works have explored classical shape-
aware convolution to accommodate specific shapes in the con-
ventional field of computer vision. Deformable convolution [6]
adjusts its sampling grid with learnable offsets suitable for
roughly isotropic morphology, such as bulky lungs in Fig. 1.
AKConv [21] gives an arbitrary number of parameters and
arbitrary sampling shapes to convolution kernels providing
richer options for the trade-off between computational over-
head and shape-fitting performance. DSConv [22] focuses on
slender and tortuous structures stretching along a specific
axis. Unfortunately, there is still no customized convolutional
operator for dynamic striped morphology with varying stretch
orientation and length-width ratio, such as 24 ribs and 2
clavicles in Fig. 1.

To move beyond such limitations, we introduce a novel
convolution plugin to tackle heterogeneous medical anatomy
segmentation (referred to as DSC-AMP), comprising dynamic
strip convolution (DSC) operator and adaptive morphology
perception (AMP) strategy. The DSC operator is explored to fit
varying morphology with intrinsic dynamic striped receptive
fields. Furthermore, the AMP strategy adaptive integrates
representations from diverse shape-aware kernels to attend to
specific heterogeneous anatomy.

In summary, the main contributions of this paper could be
summarized as follows:

1) We propose a novel convolution plugin DSC-AMP for
heterogeneous medical anatomy segmentation, which
could reform off-the-shelf CNN-based, CNN-hybridized
image segmentation network to be morphology-aware
by simple layer replacing.

2) We design a dynamic strip convolution that adaptive
focuses on elongated structures with gradually varying
stretch orientation and length-width ratio, realizing pre-
cise segmentation of challenging striped anatomies (such
as 24 ribs and 2 clavicles).

3) We introduce an adaptive morphology perception strat-
egy that matches different local morphological structures
with appropriate kernels and adaptive integrates these
diverse representations, significantly improving the rep-
resentation diversity and robustness.

4) The proposed DSC-AMP achieves state-of-the-art per-
formance on two large-scale datasets for medical
anatomy segmentation, demonstrating its effectiveness
in tackling morphological heterogeneity.

II. RELATED WORK

A. Medical Anatomy Segmentation

Medical anatomy segmentation is a critical technique for
healthcare that involves assigning an anatomy class label to
each pixel of an anatomical structure in medical images [1]–
[3], [23]–[25]. Human medical anatomies usually exhibit two
intrinsic characteristics: locality and compositionality [26].
The locality means heavy diversity of local morphology, size,
and orientation across or within different anatomies. The com-
positionality means the large structures consisting of smaller
structures, such as the ribs consisting of 24 individuals. As a
result, medical anatomy segmentation is somewhat more chal-
lenging than conventional medical image anatomy segmenta-
tion tasks. From the perspective of the network structures, the
medical image segmentation methodologies primarily encom-
pass three paradigms including the CNN-based methods [4]–
[7], [27], transformer-based approaches [10], [11], and hy-
bridized variants [12], [13]. The popular U-Net [4] and its
CNN-based variants [5], [7], [27] usually adopt a U-shaped
encoder-decoder network structure and exploit some skip con-
nections to preserve detailed information on human anatomies.
They have demonstrated remarkable effectiveness on small-
scale datasets for medical anatomy segmentation. Since the
groundbreaking work TransUnet [14], the transformer-based
segmentation approaches [10]–[13], [28] has achieved rapid
development and significantly enhanced the representation
generalization. They harness the formidable long-range in-
formation acquisition capabilities from Vision Transformers
(ViT) [15]. For example, the latest VM-UNet [16] combines
the Vision-Mamba [17] with classical U-Net [4] that estab-
lishes long-distance dependencies while still upholding linear
complexity.

Apart from the supervised paradigm, the segmentation
approaches based on foundation segmentation models and
parameter-efficient tuning (PET) technique [29], [30] have
greatly advanced the image segmentation field. The recent
debut of the Segment Anything Model (SAM) [31] marks a
significant milestone that extends the prompt-driven paradigm
into image segmentation. Then, the visual foundation mod-
els also quickly demonstrated their prowess in the domain
of medical image segmentation as well. For example, the
MedSAM [32] achieves highly accurate segmentation across
diverse modalities and targets via meticulously curating a
multi-million level dataset and carefully refining SAM on
this large-scale dataset. The nnSAM [33] further combines
the powerful representation learning ability from SAM [31]
with the adaptive configuration capability from nnUNet [5],
thereby facilitating dataset-tailored representation learning for
medical image segmentation. Despite the huge process in
medical anatomy segmentation, most of the existing methods
have not incorporated morphological knowledge about human
anatomies (such as the 24 ribs in X-ray chest images gradually
extending along various directions exhibiting dynamic strip
shapes, and the 2 lungs appearing as bulk-like structures). The
proposed DSC-AMP could utilize abundant morphological
knowledge from anatomical structures to effectively facilitate
medical anatomy segmentation.
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Fig. 2: Overview of the proposed Dynamic Strip Convolution and Adaptive Morphology Perception plugin (DSC-AMP). (a)
The illustration of reforming U-Net with the DSC-AMP plugin. (b) The mechanism of Dynamic Strip Convolution (DSC)
operator. (c) The mechanism of Adaptive Morphology Perception (AMP) strategy.

B. Shape-aware Convolution

The receptive fields of conventional convolutional kernels
are fixed as rectangular shapes, which are insensitive to
the geometric morphology in medical images. Some pioneer
works adapt the sampling region in convolution to adaptively
accommodate the morphological variation of segmentation
objects [34]–[40]. To accommodate the changes in object
shape and size, the dilated convolution [34] enlarges the
receptive field of a convolutional kernel without increasing
the number of parameters via a novel dilating operation. In
contrast to dilated convolution, which only rigidly expands
the receptive field by scaling its original rectangle shape,
deformable convolution [35] freely learns offsets for each po-
sition in the feature map aiming at adjusting its receptive field
in the form of arbitrary shape. DCU-net [39] further combines
the deformable convolution with a cascaded U-Net structure
and adaptively adjusts the receptive field of its convolution
kernels to better fit the scales and shapes of blood vessels.
D-LKA Net [41] employs large kernel convolution to enhance
the receptive field and combines deformable convolution to
focus on shape-related features. The AKConv [21] expands
the flexibility of the convolution kernels by accommodating an
arbitrary number of parameters and various sampling shapes.
This enhancement enriches the option toolboxes for balancing
computational overhead and task performance, offering a more
nuanced trade-off. DSConv [22] is designed to enhance the
perception of thin and tortuous tubular structures. In con-
trast to the deformable convolution which learns geometric
changes freely, the DSConv imposes additional continuity
constraints to prevent the perceptual field from wandering
off the segmentation target region, especially for thin tubular
structures. However, the existing methods still have difficulty
in capturing the characteristics of dynamic striped structures

with varying stretch orientations and length-width ratios, such
as 24 striped ribs. Additionally, morphology heterogeneity has
been heavily overlooked in existing methods and urgently
requires an adaptive morphology perception strategy that could
effectively mine and incorporate diverse representations from
heterogeneous medical anatomies.

III. METHOD

A. Overview Pipeline
We first introduce the overview pipeline of our dynamic

strip convolution and adaptive morphology perception plugin
(DSC-AMP) tailored for heterogeneous anatomy segmentation
in medical images. As illustrated in Fig. 2, the DSC-AMP is
composed of two pivotal elements including dynamic strip
convolution (DSC) operator and adaptive morphology per-
ception (AMP) strategy. Specifically, the DSC is delicately
designed for the intricate dynamic striped anatomy with
the morphology of gradually varying stretch orientation and
length-width ratios, such as 24 ribs and 2 clavicles. As shown
in Fig. 2 (b), the DSC learns an orientation angle and vertical
offsets for each local strip structure via a Local-Macro Glance
(LmG), then constructs a dynamic strip receptive field with
them. As depicted in Fig. 2 (c), the AMP further seamlessly
integrates a series of diverse convolutional kernels via local-
macro observation and cross-attention mechanism, including
standard convolution, deformable convolution, and the pro-
posed dynamic strip convolution. This incorporation enables
morphology-aware representation learning across substantial
morphology-diverse medical anatomies. Eventually, the pro-
posed DSC-AMP plugin could reform off-the-shelf CNN-
based, CNN-hybridized image segmentation network to be
more morphology-aware simply by substituting corresponding
CNN layers with the proposed DSC-AMP. Without losing
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Fig. 3: Detailed structure of the dynamic strip convolution

generality, we take the classical U-Net [4] as an example to
illustrate the layer replacement operation, which is shown in
Fig. 2 (a). In the subsequent sections, we will dig into the
details of the DSC and AMP components separately.

B. Dynamic Strip Convolution
In this section, we will introduce the underlying mechanism

and detailed implementation of the proposed dynamic strip
convolution. Given a standard 2D convolution kernel, the
convolution range of the kernel is confined within a square
area, which is shape-agnostic and incapable of capturing the
intrinsic representation of dynamic striped medical anatomy.
In order to conform strip structures that gradually stretch
along arbitrary orientations, inspired by classical deformable
convolution [6], we design an angle-offset prediction module
in Fig. 3. The module learns an orientation angle θ and cor-
responding offset ∆ via a Local-macro Glance (LmG), which
could provide a relative macro perception of local morphology
around the kernel center. The angle θ ∈ [−π/2, π/2] denotes
the stretch orientation of a strip structure, and the offset ∆ =
{δj | δj ∈ [−1, 1], j ∈ {⌊−(k×k)/2⌋, · · · ,−1, 0, 1, · · · , ⌊(k×
k)/2⌋}} denotes the vertical offset corresponding each loca-
tion j in a flattened convolution kernel along this direction. For
example, the angle-offset prediction module needs to learn one
θ and eight δj to form a strip convolution kernel of size 3× 3
(the offset value at the kernel center is set as 0 directly).

Assume that we have a Cartesian coordinate system Coord′:
(x′, y′) in a small local region whose horizontal and vertical
directions are respectively paralleled and vertical with the
learned orientation angle θ (see Fig. 2 (b)). Given a standard
3×3 convolution kernel in this coordinate system, the positions
of its flattened sampling grid could be represented as C ′

i±d =
(x′

i±d, y
′
i±d), where d = {0, 1, 2, 3, 4} denotes distance from

the central point along the x′ axis. Inspired by [6], [22], the
sampling position of a local strip convolution in this local
region is defined as

C
′

i±d =

{
(x

′

i+d, y
′

i+d) = (x
′

i + d, y
′

i +
∑i+d

j=i δj),

(x
′

i−d, y
′

i−d) = (x
′

i − d, y
′

i +
∑i

j=i−d δj).
(1)

Since the offset δj ∈ ∆ is successively summed along the
x′ axis in Eq. 1, it ensures a gradual (non-mutational) change
in stretch orientation and length-width ratio of the convolution
kernel. Thus, the strip convolution caters to a strip morphology
very well. As illustrated in Fig. 3, an angle-offset prediction
module further exploits a relative macro glance of local mor-
phology around the kernel center to learn a position-specific

orientation angle θ and corresponding offset ∆ for each local
region, gradually forming a dynamic striped receptive filed in
the whole feature map to dynamically modeling varying strip
structures, such as 24 ribs and 2 clavicles. The relative macro
glance is realized by expanding the local receptive field of
the angle-offset prediction module from 3 × 3 to 5 × 5, thus
providing a relative macro perception of local morphology to
enhance its morphology perception ability.

Since the local coordinate system Coord′: (x′, y′) varies
with the stretching orientation θ, we exploit a rotating formula
(Eq. 2) to it back to the original coordinate system of feature
map Coord: (x, y), thus simplifying the calculation process
and making it convenient to be plugged in existing CNN-based
segmentation networks, i.e.{

x = x
′
cos θ − y

′
sin θ,

y = x
′
sin θ + y

′
cos θ,

(2)

where x and y respectively denote the horizontal and vertical
coordinates of a point in the original coordinate system, while
x

′
and y

′
denote the horizontal and vertical coordinate of

the corresponding point in the rotated local coordinate system
along the direction of angle θ. Given the receptive field of the
proposed dynamic strip convolution in the original coordinate
system coordinates at Ci±d = (xi±d, yi±d), we can derive the
following transform formula, i.e.

Ci±d =


(xi+d, yi+d) =

(
d cos θ − δi+d sin θ,

d sin θ + δi+d cos θ
)
,

(xi−d, yi−d) =
(
− d cos θ − δi−d sin θ,

− d sin θ + δi−d cos θ
)
,

(3)

where the θ and δj ∈ ∆ are the dynamic orientation and offset
predicted by the angle-offset prediction module in Fig. 3.

In consideration that the predicted offset is typically frac-
tional, the following bilinear interpolation operation is further
required during the implementation of our DSC, i.e.

C =
∑

C′′ bilinear interpolation(C
′′
, C) · C

′′
(4)

where C denotes a fractional location in Eq. 2 and C
′′

accounts for every integral spatial positions.
It is worth noting that the classical DSConv [22], which

is adept at slender tubular structure along the horizontal
or vertical axis, could be treated as a special case of our
dynamic strip convolution (DSC) when the stretch orientation
θ is fixed on the horizontal or vertical direction. Therefore,
it requires additional deliberately-designed multi-view fusion
strategy [22] to implicitly fit varying structures that don’t
proceed on the axes. In contrast, the proposed DSC directly
learns the dynamic orientation and offset for each local region
forming a dynamic strip receptive field, which is much better
for modeling gradually varying strip morphology, such as 24
ribs and 2 clavicles.

C. Adaptive Morphology Perception

In this section, we dig into the details of the adaptive
morphology perception (AMP) strategy which intends to adap-
tively mine and integrate crucial representations corresponding
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to heterogeneous anatomies during medical image segmenta-
tion. We observe that the anatomical structures exhibit substan-
tial morphological variations in both inter-class (e.g., between
ribs and lungs) and intra-class (e.g., among different ribs),
which is highly heterogeneous (see Fig. 1). Therefore, we
apply different morphology-aware and morphology-unaware
kernels to capture comprehensive representations for hetero-
geneous anatomies from different perspectives. Specifically,
as shown in Fig. 2 (c), our Dynamic Strip Convolution (DSC)
aims at capturing the representation of gradually varying strip-
like structures (such as ribs and clavicles), the deformable con-
volution intends to cater to approximately isotropic bulk-like
structures (such as lungs), the standard convolution extracts
conventional shape-agnostic representations, etc.

A straightforward manner to integrate these diverse repre-
sentations is element-wise addition or concatenation. However,
they are completely unaware of the local morphology around
the kernel center thus impairing the representation discrim-
inativeness. To address this issue, we design a Local-macro
Attention (LmA) to guide the representation incorporation
process adaptively. As illustrated in Fig. 4, the comprehensive
morphology-aware representation fMA for each convolution
layer is obtained via

fMA = LmA(expand(f
′
, λ), concat(f1, f2, · · · , fn)) (5)

where the LmA denotes the proposed Local-macro Attention
technique, f

′
is the local feature map before the above con-

current convolutions, f1, f2, · · · , fn are n diverse representa-
tions perceived from n types of convolution kernels (such
as dynamic strip convolution, deformable convolution, etc.).
While the magnification factor λ serves as a hyperparameter
for expanding the observation range of LmA.

The implementation details are illustrated in Fig. 4. We
first expand the observation range of each position in the
current convolution layer by λ (i.e. magnification factor) times.
Then, we utilize it as the query Q and the concatenated
representations from diverse types of convolution kernel as
the key K and value V for a Local-macro Attention (LmA).
Since the magnified feature map in a local area could exhibit
more pronounced geometric morphological characteristics, the
representations that better conform to local morphology will
obtain higher attention scores in the LmA, eventually realizing
an adaptive morphology perception and representation incor-
poration in the corresponding layer. The detailed calculation

process of the LmA module is implemented as follows:

Q = linear(flatten(expand(f
′
, λ)))

K,V = linear(flatten(concat(f1, f2, · · · , fn)))

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
·V

fMA = reshape(Attention(Q,K,V))

(6)

where the function expand denotes the mentioned operation
above for expanding the observation range, and the linear
represents a linear layer. The remain functions including
flatten, reshape, softmax, Attention are corresponding
operations as the name indicates. Finally, the adaptively
weighted representation fMA has comprehensive insights from
different shape-aware convolutional kernels that concentrate on
diverse morphological structures, significantly facilitating the
morphology perception capacity of the proposed DSC-AMP.

Taking the convolutional segmentation networks built on
classical stage-block design as an example (e.g. U-Net), we
illustrated the detailed procedure of our DSC-AMP in Algo-
rithm 1. It consists of a DSC-AMP reformed encoder, a DSC-
AMP reformed decoder, and a segmentation head. Finally, the
whole segmentation network is end-to-end optimized by the
classical Binary Cross-Entropy (BCE) loss [4].

IV. EXPERIMENT

A. Datasets
1) CXRS Dataset: The Chest X-ray Segmentation (CXRS)

dataset is an in-house dataset curated and annotated jointly
by the Anhui University and the Anhui University of Chi-
nese Medicine. It comprises 1254 high-resolution chest X-ray
images, each accompanied by pixel-wise annotations of 31
distinct anatomical structures. Most of the X-ray images in the
dataset have a resolution higher than 2K×2K, and some sam-
ples include challenging conditions such as pulmonary lesions.
The anatomical structures annotated in this dataset include 24
ribs, 2 clavicles, 2 scapulae, 2 lungs, and 1 mediastinum. We
divided the dataset into training, validation, and test sets in a
7:1:2 distribution, respectively comprising 879 training, 125
validation, and 250 test samples. Moreover, the proportion of
normal samples to abnormal samples (including those with
pathological lesions) is consistently maintained at a 3:2 ratio
within each subset.

As mentioned in the Introduction, the medical anatomies in
chest X-ray images qualitatively exhibit significant morpho-
logical heterogeneity (refers to Fig. 1). To further quantify this
heterogeneity, we employ the Procrustes Analysis technique
[20] to calculate the Procruste Disparity between each pair of
anatomical structures. A higher Procruste Disparity value in-
dicates larger morphological differences. Fig. 5 quantitatively
shows that the anatomical structures in the CXRS dataset
exhibit a high degree of morphological heterogeneity, where
the anatomy index 1 to 24 represent the ribs, 25 and 26
denote the clavicles, 27 and 28 correspond to the scapulae,
29 and 30 are attributed to the lungs, and 31 signify the
mediastinum. The result indicates the CXRS dataset is very
suitable for examining our Dynamic Strip Convolution and
Adaptive Morphology Perception Plugin (DSC-AMP).
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Algorithm 1 Overall procedure of the proposed DSC-AMP

1: Input: Images X , Labels Y , Number of stages Nstage,
Number of blocks per stage Nblock

2: Output: Updated model
3: for (x, y) in (X ,Y) do
4: ▷ DSC-AMP Reformed Encoder
5: for i = 0 to Nstage do
6: for j = 0 to Nblock do
7: f1 = standard conv(x)
8: f2 = deformable conv(x)
9: · · ·

10: fn = dynamic strip conv(x)
11: x← AMP(concat(f1, f2, · · · , fn))
12: end for
13: f i

ma ← Downsample(x)
14: end for
15: ▷ DSC-AMP Reformed Decoder
16: for i = Nstage − 1 to −1 do
17: xi ← Upsample(x)
18: x← Concat(f i

ma, xi)
19: for j = 0 to Nblock do
20: f1 = standard conv(x)
21: f2 = deformable conv(x)
22: · · ·
23: fn = dynamic strip conv(x)
24: x← AMP(concat(f1, f2, · · · , fn))
25: end for
26: end for
27: ▷ Segmentation Head
28: ŷ = segmentation head(x)
29: Calculate segmentation loss L ← LBCE(ŷ, y)
30: Calculate gradient and update model via the loss L
31: end for

Fig. 5: The Procrustes Disparity between different medical
anatomies in the CXRS dataset

2) SMOS Dataset: The Synapse Multi-Organ Segmentation
(SMOS) dataset [42] is a heterogeneous multi-organ segmenta-
tion dataset in the form of CT scans. The dataset employed in
our experiments comprises abdominal CT scans from 30 cases
sourced from the Multi-Atlas Abdomen Labeling Challenge
in MICCAI 2015 [42]. It contains a total number of 3779
axial abdominal clinical CT images. Each CT volume consists
of 85 to 198 slices (512×512 pixels), and the voxel spatial
resolution ranges from ([0.54–0.54]×[0.98–0.98]×[2.5–5.0])
mm3. Following the protocol in [10], [14], we split the dataset
into training and testing sets that contain axial slices (images)
from 18 cases (2212 samples) and 12 cases, respectively.

B. Evaluation Metrics
Regarding the CXRS dataset, we employ the mean Dice

Similarity Coefficient (mDice) and mean Intersection over
Union (mIoU) as evaluation metrics. The mIoU is the class-
wised mean of the Intersection over Union (IoU) for each
segmentation class and mDice is the class-wised mean of the
Dice Similarity Coefficient (DSC) for each segmentation class.
Formally, the predicted segmentation mask can be categorized
into True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN) per its relation with the ground-
truth mask. Then, the DSC is formulated as follows:

DSC =
2× TP

2× TP + FP + FN
, (7)

while the IoU is computed via Eq. 8, i.e.

IoU =
TP

TP + FP + FN
, (8)

thus mIoU in the CXRS dataset is the average of the IoUs
corresponding to 31 medical anatomies.

As for the SMOS dataset, following [14], we utilize the
average mean Dice Similarity Coefficient (mDice) and average
Hausdorff Distance (HD) as the primary metrics to assess the
performance across 8 abdominal organs (including the aorta,
gallbladder, spleen, left kidney, right kidney, liver, pancreas,
and stomach). Besides, the mDice is also exclusively employed
to evaluate segmentation performance for specific organs in
this paper. The HD metric is formulated as follows:

HD(Y, Ŷ ) = max

{
max
y∈Y

min
ŷ∈Ŷ

d(y, ŷ),max
ŷ∈Ŷ

min
y∈Y

d(ŷ, y)

}
(9)

where Y and Ŷ are the ground-truth mask and predicted
segmentation mask, respectively. The term d(y, ŷ) represents
the Euclidean distance between points y and ŷ.

C. Implementation Details
Regarding the main hyper-parameters in the proposed Dy-

namic Strip Convolution and Adaptive Morphology Perception
Plugin (DSC-AMP), the convolution kernel for Relative-macro
Glance (see Fig. 2 (b) and Fig. 3) is empirically set as 5×5, the
magnification factor λ in Local-macro Attention module (see
Fig. 4) is empirically set as 3. When reforming classical U-
Net with the proposed DSC-AMP (see Fig. 2 (a)), the number
of output channels corresponding to each stage is set as [64,
128, 256, 512, 1024].
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TABLE I: Comparing with the state-of-the-art methods in medical anatomy segmentation on the CXRS dataset

Methods mIoU (%) ↑ mDice (%) ↑ Ribs Clavicles Scapulaes Lungs Mediastinum
U-Net [4] (baseline) 66.85 77.35 73.57 89.33 86.01 95.06 91.14
Unet++ [43] 65.19 76.04 72.45 87.88 80.79 94.97 91.21
TransUNet [14] 67.12 77.53 74.01 88.70 84.36 94.98 90.99
Swin-Unet [10] 66.37 77.12 73.24 89.57 86.33 95.17 90.76
BRAU Net++ [44] 67.69 78.58 75.05 90.39 86.47 95.03 91.14
nnUNet [5] 68.81 78.97 75.49 90.41 86.42 95.53 91.19
MedSAM [32] 54.34 66.36 60.57 81.75 80.55 94.30 90.44
MedSAM-Adapter [45] 61.03 73.27 69.02 83.92 83.73 94.43 90.93
Swin-UMamba [46] 68.22 78.70 75.21 90.22 86.37 95.13 91.07
D-LKA Net [41] 69.53 79.54 76.31 90.14 86.21 95.18 91.20
DSCNet [22] 70.34 80.13 77.39 89.18 85.29 93.92 89.94
DSC-AMP (ours) 73.03 82.36 79.90 90.50 86.49 95.20 91.21

TABLE II: Comparing with the state-of-the-art methods in medical anatomy segmentation on the SMOS segmentation dataset

Methods mDice (%) ↑ HD (mm) ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach
U-Net [4] (baseline) 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
Attention U-Net [7] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
BRAU-Net [44] 70.27 32.91 78.51 61.69 72.94 67.90 93.14 40.88 84.42 62.68
TransUNet [14] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
Swin-Unet [10] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
TransDeepLab [12] 80.16 21.25 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40
HiFormer [47] 80.39 14.70 86.21 65.69 85.23 79.77 94.61 59.52 90.99 81.08
PVT-CASCADE [48] 81.06 20.23 83.01 70.59 82.23 80.37 94.08 64.43 90.10 83.69
DSC-AMP (ours) 81.77 21.12 89.61 65.71 86.44 81.16 95.14 63.14 91.83 81.16

As for the training details, we apply classical Binary Cross-
Entropy (BCE) loss [4] to optimize segmentation networks
in this paper. A range of data augmentation strategies are
employed considering the typical scarcity of medical imaging
data, including image rotations (90°, 180°, and 270°), image
flipping, Gaussian blurring, and Gaussian noise adding. All
the models are implemented with PyTorch 1.13 and trained
on 4 NVIDIA RTX 3090 graphics cards with 24GB VRAM.

For the CXRS dataset, we resize every sample to the same
size of 448×448 and train all models via Adam optimizer [49]
with a batch size of 4. A Cosine Annealing learning rate
schedule with an initial value of 1e-4 and a momentum of
0.9 is employed during training. All the methodologies on this
dataset are trained for 30 epochs for fair comparison.

For the SMOS dataset, we resize all images to the same
resolution of 224×224. All models are in total trained for 400
epochs via the stochastic gradient descent (SGD) optimizer,
with a batch size of 24, a learning rate of 0.05, a momentum
of 0.9, and a weight decay of 1e-4.

D. Experimental Results
To validate the effectiveness of the proposed Dynamic

Strip Convolution and Adaptive Morphology Perception plugin
(DSC-AMP), we conduct comparison experiments on two
large-scale datasets for medical anatomy segmentation, includ-
ing the CXRS and SMOS datasets. In this section, we will the
proposed method with other state-of-the-art methods.

1) Comparison Results of Medical Anatomy Segmentation
on the CXRS Dataset: We first plugin the proposed DSC-AMP
into a plain U-Net [4] reforming it to be more morphology-
aware. Then, we compare it with four categories of state-
of-the-art segmentation methods, including the four CNN-
based methods [4], [5], [22], [43], four Transformer-based

[10], [14], [41], [44], one Mamba-based methods [46], and
two large foundation models based methods [32], [45]. For
a fair comparison, all the methods were evaluated under the
same experimental settings as mentioned in the Implemen-
tation Details. We report the mean Intersection over Union
(mIoU) and mean Dice Similarity Coefficient (mDice) for all
31 medical anatomies in Table I. Besides, the 31 medical
anatomies are then grouped into five categories (including
ribs, clavicles, scapulae, lungs, and mediastinum), and the
mDice for each category is also reported in Table I for fine-
grained comparison. Note that the experimental results of other
comparing segmentation methods on the CXRS dataset are
reproduced from their official code. The results show that
our DSC-AMP achieves state-of-the-art performance on both
the mIoU and mDice metrics among all the compared meth-
ods. Specifically, our DSC-AMP significantly outperforms the
CNN-based methods (i.e. [4], [5], [22], [43]). Facilitated by the
morphology perception abilities from the proposed DSC-AMP,
our methods boost the performance of its baseline (U-Net)
with remarkable margins of 6.18% and 5.01% on mIoU and
mDice, respectively. In addition, Although only in the form
of a simple CNN baseline, our DSC-AMP even outperforms
modern Transformer-based approaches such as TransUNet
[14] and Swin-Unet [10]. Notably, the famous TransUNet is
the first model that applies Transformer in the field of medical
image segmentation, our DSC-AMP surpasses it by 5.91%
and 4.83% over the metric of mIoU and mDice, respectively.
It is worth noting that the large medical foundation model
MedSAM [32] and its Adapter [45] also perform worse on the
CXRS dataset heterogeneous medical anatomy segmentation.
It indicates the limitations of structure-agnostic data-driven
large models are not all we need and also underscores the
necessity of task-specific methods in the medical field.

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2025.3540211

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Anhui University. Downloaded on February 16,2025 at 09:14:44 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2025

According to the class-wise mDice results in Table I, our
method achieves the best across various anatomical structures,
particularly for ribs. It surpasses its baseline (i.e. U-Net) and
the SOTA method (i.e. DSCNet [22] ) by respectively a margin
of 6.33% and 2.51% on ribs. The significant performance gain
in ribs demonstrates that our Dynamic Strip Convolution has
effectively captured the discriminative representation of the
varying strip structures such as ribs. Further benefiting from
the outstanding perception capability for diverse morphology,
our DSC-AMP eventually set state-of-the-art segmentation
performances for all anatomical classes in the CXRS dataset.

To conduct intuitive comparisons, we further visualize
the medical anatomy segmentation results from different ap-
proaches (see Fig. 6) including the classical CNN-based U-Net
[4], its Transformer-based variant TransUnet [14], the large
kernel convolution method DLK-Net [41], the large founda-
tion model method MedSAM-Adapter [45], the mamba-based
method Swin-UMamba [46], the latest approach DSCNet [22],
and the proposed DSC-AMP. For a clear result comparison of
strip structures, only the 24 ribs are visualized in Fig. 6 (a).
The marked results of the first row show that only our DSC-
AMP could continuously segment the marked orientation-
varying rib, indicating the effectiveness of our dynamic strip
convolution. Further benefiting from the adaptive morphology
perception strategy, our DSC-AMP distributes more attention
to the marked ribs in the second row, thus successfully
avoiding serious class errors in other methods. In Fig. 6 (b),
we visualize the segmentation results of all 31 classes of
heterogeneous anatomies in the CXRS dataset. The results
marked in yellow indicate that our DSC-AMP is capable of
adaptively perceiving heterogeneous morphology and achieves
the best segmentation for different medical anatomies (such as
the left scapula and the third rib of the left chest in the first
row in Fig. 6 (b)).

2) Comparison Results of Medical Anatomy Segmentation
on the SMOS Dataset: To further validate the generalization
of the proposed approach, we conduct experiments on another
dataset SMOS [42] which is for multi-organ segmentation
tasks. Following the experimental settings in BRAUNet++
[44], i.e. the mean Dice-Similarity Coefficient (mDice) and
Hausdorff Distance (HD) are utilized as the overall evaluation
metrics and also the mDice for each individual organ are
reported at the same time for fine-grained evaluation. The
experimental results are presented in Table II. The results
show that our DSC-AMP achieves a mean Dice-Similarity
Coefficient (mDice) of 81.77% and a Hausdorff Distance (HD)
of 21.12 mm. Specifically, our DSC-AMP reforms a relatively
weak baseline (i.e. U-Net) to establish a new state-of-the-art
result w.r.t the mDice metric and a comparable result with
existing methods w.r.t the HD metrics. Although the HD result
from the Hiformer [47] is somewhat better than our DSC-
AMP, its dedicated Double-Level Fusion Module captures
boundary features well that deliberately improve the HD met-
ric but do not improve the mIoU metric significantly. Besides,
more fine-grained class-wise comparisons are listed in Table
II. Our DSC-AMP consistently outperforms other methods in
most organs, and there is a significant performance margin
in the aorta. This performance gain is mainly owing to our

TABLE III: Ablation studies of the proposed DSC-AMP on the
CXRS and DRIVE datasets.

Primary Components mDice (%) ↑
Kernel Types Fusion Strategies Dataset

Standard Deformable Dynamic Strip (ours) Concat AMP (ours) CXRS DRIVE
✓ 77.35 80.73
✓ ✓ ✓ 78.56 80.83
✓ ✓ ✓ 79.10 81.65

✓ ✓ ✓ 80.76 81.70
✓ ✓ ✓ ✓ 81.59 81.73
✓ ✓ ✓ ✓ 82.36 81.80

Dynamic Strip Convolution operator which is good at captur-
ing the discriminative representation from orientation-varying
structures. Finally, the proposed Morphology-aware Perception
strategy adaptively captures the most crucial morphological
information via diverse convolution kernels, yielding superior
segmentation performance than existing methods. We also
visualize some segmentation results on the SMOS dataset
in Fig. 7. We observe that our dynamic strip convolution
(DSC) caters better to the orientation-varying structures (such
as the pink structure in Fig. 7). Besides, our DSC-AMP also
achieves satisfied segmentation on other non-strip organs (such
as the cyan structure in Fig. 7). It is because our adaptive
morphology perception (AMP) strategy adaptively chooses the
more suitable deformable convolution for them, which is good
at capturing these rough isotropic shapes.

E. Ablation Studies

In order to analyze the effectiveness of every primary
component in the proposed approach, extensive ablation ex-
periments have been conducted on the CXRS dataset and the
DRIVE dataset. The results on the mean Dice Similarity Coef-
ficient (mDice) metric are reported in Table III. The first row
contains the performance of the plain U-Net baseline [4] which
only utilizes standard convolution. The 2nd to 5th rows are the
experimental results from combination variants consisting of
the standard convolution, deformable convolution [6], and the
proposed dynamic strip convolution, which are fused by simple
multi-head concatenation strategy. These results show that a
diverse kernel combination benefits heterogeneous medical
anatomy segmentation. At the same time, our dynamic strip
convolution performs much better than traditional deformable
convolution since the customized capability of modeling abun-
dant varying strip anatomies in the CXRS datasets. Besides,
our Adaptive Morphology Perception (AMP) strategy further
boosts the segmentation performance from 81.59% to 82.36%
on the CXRS dataset(the last and second-to-last rows in Table
III), owing that our AMP adaptively perceives heterogeneous
medical anatomies via the Local-macro Attention (LmA) and
effectively incorporates comprehensive insight from various
morphology-aware convolutional kernels. In addition, we visu-
alize the activation maps at a shallow layer from different types
of convolution kernels in the AMP module to qualitatively
examine their contributions in Fig. 8. The results clearly
show that our dynamic strip convolution is more sensitive to
orientation-varying strip structures (such as ribs), validating
the ability of our DSC to model dynamic strip structures.
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Image & Label Segmentation Results
Image Label U-Net TransUnet DLK-Net Our DSC-AMP

( a )

( b )

MedSAM-Adapter Swin-UMamba DSCNet

Fig. 6: Visualization comparison of the medical anatomy segmentation results from different approaches on the CXRS dataset.
(a) Only the 24 ribs are visualized for a clear comparison, (b) All 31 classes of heterogeneous anatomies are visualized.

Image & Label Segmentation Results
Image Label U-Net TransUnet PVT-CASCADE Our DSC-AMP

Fig. 7: Visualization comparison of segmentation results from different approaches on the SMOS dataset.

Test Image Standard
Conv

Deformable
Conv

Dynamic Strip
Conv

Fig. 8: Visualization of activation maps at a shallow layer for
different types of convolution kernels

F. Effectiveness of the Dynamic Strip Convolution

The proposed Dynamic Strip Convolution plays a pivotal
role in our DSC-AMP approach, which is adept at ex-
tracting crucial morphological representation by learning the
essential geometric information of orientation-varying strip-

TABLE IV: Effectiveness evaluation of the proposed Dynamic
Strip Convolution (DSC) on the typical CXRS-Rib and DRIVE
datasets which contain abundant varying strip structures

Datasets Convolution Types mDice (%) ↑ ∆mDice

CXRS-Rib

Standard Convolution 75.45 -
Deformable Convolution 76.97 +1.52

Dynamic Snake Convolution 79.13 +3.68
Dynamic Strip Convolution 80.97 +5.52

DRIVE

Standard Convolution 80.73 -
Deformable Convolution 80.83 +0.10

Dynamic Snake Convolution 81.48 +0.75
Dynamic Strip Convolution 81.65 +0.92

like structures in medical images. To further individually
validate the efficacy of the proposed strip convolution, we
conducted segmentation experiments on two datasets that
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contain abundant varying stripped structures including the
CXRS-Rib and DRIVE [50] datasets. The CXRS-Rib dataset
is a selected subset of the CXRS dataset which limits the
segmentation targets to only the 24 stripped ribs, and the
DRIVE dataset is a public retinal vessel segmentation dataset.
To examine the effectiveness and superiority of our dynamic
strip convolution operator, we replace every convolution block
in the plain U-Net [4] with operators in the form of standard
convolution, deformable convolution, dynamic snake convo-
lution, and our strip convolution, respectively. The detailed
experimental results are shown in Table IV. We observe the
proposed strip convolution significantly enhances the segmen-
tation performance in both datasets which mainly contain
elongated structures with gradually varying stretch orientation
and length-width ratio. Specifically, replacing standard convo-
lution in plain U-Net with our strip convolution significantly
boosts the segmentation performance by large margins of
5.52% and 0.92% on the CXRS-Rib and DRIVE datasets,
respectively. The DSConv [22], which is specially designed
for slender tubular structures, also makes some improvements
over baseline standard convolution. It could be treated as a
special case of our dynamic strip convolution along a specific
axis. Although it additionally utilized a deliberately designed
multi-view fusion strategy [22], our DSC still outperforms
it by 1.84% and 0.17% on CXRS-Rib and DRIVE datasets,
respectively. Furthermore, we conducted an ablation study that
analyzed the impact of applying DSC at different network
depths in Table V. The results clearly show that DSC performs
most effectively in shallow layers since shallow layers contains
more fine-grained strip anatomical structures, such as 24 ribs
and 2 clavicles. Its performance gain gradually decreases in
deeper layers but still outperforms the standard convolution.

Deformable
Conv

Dynamic Strip
Conv

CXRS

DRIVE

Test
Image

Deformable
Conv

Dynamic Strip
Conv

Fig. 9: Visualization comparison of different adaptive kernels.

TABLE V: Effectiveness examination of the DSC along differ-
ent depths. The DSC operators in a reformed U-Net (Fig. 2a)
are replaced by the standard convolution block by block

Block Number mIoU(%)↑ mDice(%)↑1 2 3 4 5
✓ ✓ ✓ ✓ ✓ 73.03 82.36
× ✓ ✓ ✓ ✓ 70.25 (-2.78) 79.62 (-2.74)
✓ × ✓ ✓ ✓ 71.12 (-1.91) 80.45 (-1.91)
✓ ✓ × ✓ ✓ 72.01 (-1.02) 81.30 (-1.06)
✓ ✓ ✓ × ✓ 72.45 (-0.58) 81.85 (-0.51)
✓ ✓ ✓ ✓ × 72.70 (-0.33) 82.10 (-0.26)

G. Visualization Comparison of Adaptive Kernels
Following [22], we superimpose a total of 729 points

(red) of 3 layers onto original test images to visualize the
convolutional range and shape associated with a given point
(yellow). The results in Fig. 9 indicate that our DSC is more
sensitive to strip structures that cater well to strip structures
with gradually varying stretch orientation and length-width
ratio, such as the marked rib and vessel in Fig. 9.

H. Influence of Hyper-parameters
In this section, we will empirically analyze the influence

of some vital Hyper-parameters in the proposed Dynamic
Strip Convolution and Adaptive Morphology Perception Plu-
gin (DSC-AMP) and provide some experience in selecting
these hyper-parameters.

1) Influence of the Large Kernel Size in the Local-macro
Glance (LmG): The Local-macro Glance (LmG) module in
Fig. 3 provides the primary relative macro perception of local
morphology, thus its large kernel size kl is a vital parameter to
control the perception range for dynamic orientation learning
in our DSC. To examine the influence of the large kernel size
kl towards the capability of strip morphology perception in our
DSC, we conduct experiments with kl varies in {3, 4, 7} on the
CXRS dataset and presented segmentation performance on the
metrics of mIoU and mDice in Table VI. We observe the best
segmentation performance achieved at kl = 5, where the mIoU
and mDice are 73.03% and 82.36%, respectively. The experi-
mental results reveal that appropriately expanding the relative
macro perception is beneficial for capturing morphological
information in each local area. However, an excessively broad
kernel is contrarily detrimental to the local morphological
perception, as it might be disturbed by incorrect morphological
information from distant areas or different anatomies.

TABLE VI: The influence of the large kernel size in Local-
macro Glance (LmG) module

Large Kernel Size (kl × kl) mIoU (%) ↑ mDice (%) ↑
3×3 71.00 80.97
5×5 73.03 82.36
7×7 71.22 81.28

2) Influence of Magnification Factor λ: The magnification
factor λ serves as an important hyper-parameter for expanding
the observation range of the Local-micro Attention (LmA)
module in Fig. 4 and Eq. 5. Specifically, the observation
range is 3 × 3 when λ = 1, it will increase to 5 × 5
when λ = 2, and so on. To examine the influence of the
magnification factor on the proposed Adaptive Morphology
Perception strategy, we carry out experiments with a series
of λ ∈ {1, 2, 3, 4} on the CXRS datasets, the results are
shown in Table VII. We can observe that the proposed DSC-
AMP achieves its best performance when λ = 3, indicating a
medium-level expansion is beneficial. No expansion (i.e. λ =
1) deteriorates the segmentation outcome where the mDice
and mIoU drop from 81.59% to 81.07% and from 71.46 to
71.14%, respectively. Similarly, excessive expansion (such as
λ = 4) also degrades the segmentation performance of medical
anatomies.

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2025.3540211

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Anhui University. Downloaded on February 16,2025 at 09:14:44 UTC from IEEE Xplore.  Restrictions apply. 



HU et al.: DYNAMIC STRIP CONVOLUTION AND ADAPTIVE MORPHOLOGY PERCEPTION PLUGIN FOR MEDICAL ANATOMY SEGMENTATION 11

TABLE VII: Influence of the Magnification Factor

Magnification Factor (λ) mIoU (%) ↑ mDice (%) ↑
1 71.14 81.07
2 72.39 82.18
3 73.03 82.36
4 72.80 82.05

TABLE VIII: Comparison of computational complexity and the
number of model parameters on the DRIVE Dataset

Methods #Params #FLOPs mDice (%)
U-Net [4] 31.05M 54.86G 80.73

TransUNet [14] 93.23M 32.51G 80.56
CS2Net [51] 8.40M 14.00G 77.53
DCU-net [39] 92.05M 283.20G 80.83
DSCNet [22] 115.76M 332.14G 81.48

DSC-AMP (ours) 104.13M 310.01G 81.65

I. Comparison of Model and Computational Complexity

In this section, we reported the number of model parameters
(Params) and forward floating-point operations (FLOPs) on the
DRIVE dataset for complexity comparison. The size of the
input image is fixed as 256 × 256 for fair comparison when
calculating FLOPs. The results in Table VIII indicate that the
approaches equipped with deformable kernels (the last three
rows) generally require more model parameters and compu-
tational resources but achieve significantly superior segmenta-
tion performance. Moreover, compared to recent state-of-the-
art DSCNet [22] designed for tubular structures, our DSC-
AMP achieves better performance with fewer parameters. This
superiority is due to our Dynamic Strip Convolution directly
learning the angular offsets of strip structures, thus avoiding
learning redundant parameters and accommodating a broader
range of angular variations.

TABLE IX: Experimental results from various network archi-
tectures on the CXRS dataset.

Model Without DSC-AMP With DSC-AMP

mDice (%) mIoU (%) mDice (%) mIoU (%)

DeepLabV3 [52] 64.04 52.37 67.16 55.23
UNet [4] 77.35 66.85 82.36 73.03
TransUNet [14] 77.53 67.12 78.26 67.89

J. Generalization Analysis of Network Architectures

In this section, we evaluate the generalization ability of our
convolutional plugin regarding various network architectures.
Besides classical U-Net architecture, we further integrate it
into a widely-used CNN segmentation network DeepLabV3
[52] that does not under typical U-Net architecture and a CNN-
Transformer hybrid architecture TransUNet [14]. The results
on the CXRS dataset in Table IX indicate that the proposed
convolutional plugin achieves consistent improvements across
various network architectures. Notably, the performance en-
hancement is more significant in DeepLabV3 and U-Net since
they contain pure convolutional layers that could benefit more
from the proposed convolutional plugin.

K. Limitations and Failure cases
Although the proposed DSC-AMP significantly improves

the segmentation performance for heterogeneous medical
anatomy segmentation, it introduces additional learnable pa-
rameters, computational resources, and storage costs compared
to standard convolution. Improvements to alleviate these issues
wait for future research, such as replacing standard channel
operation with depth-wise separable operation and replacing
deformable convolution in our AMP with the more efficient
DCNv4 [53]. Additionally, our method is designed for 2D
medical image segmentation and additional modification is
required before applying to 3D medical images.

Image Prediction Image Prediction

Fig. 10: Failure cases analysis on the CXRS dataset.

In addition, we include some typical failure cases from
our DSC-AMP on the test samples in the CXRS dataset,
as shown in Fig. 10. Our dynamic strip convolution caters
well to most of the strip-like ribs but performs unsatisfying
in a few bottom ribs and those overlaps with lungs. This is
mainly because these test examples are from patients with
certain lesions whose X-ray images have relatively low local
contrast. Thus, it is more difficult to distinguish corresponding
anatomical organs (such as ribs) from other surrounding organs
and additional image enhancement procedures may alleviate
this issue.

V. CONCLUSION

This paper proposes a simple yet effective morphology-
aware plugin for medical anatomy segmentation, which can
adaptively perceive and model heterogeneous morphological
structures. It adaptively adjusts the kernel shape and sam-
pling range of convolutional segmentation layers according
to the morphology characteristics of heterogeneous segmen-
tation targets, thereby achieving precise and adaptive seg-
mentation. Specifically, we explore a novel Dynamic Strip
Convolution operator customized for slender and orientation-
varying strip anatomies such as ribs and clavicles. Further-
more, the proposed Adaptive Morphology Perception strategy
matches different local morphological structures with appro-
priate kernels, and adaptive integrates these diverse represen-
tations through local-macro attention. Eventually, our DSC-
AMP achieves state-of-the-art performance on two large-scale
datasets for anatomy segmentation, including the CXRS and
SMOS datasets.
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