

1. Introduction

Task: Group activity recognition

> Input: Videos containing many interactive individuals (persons). > Output: Activity label of group behavior.

Background

- > Group activities involve dynamics among many interactive and noisy individuals.
- > Only a few participants at several key frames dominate and finally define the group activity.

> A semantic relation graph (SRG): Model relations among individuals.

> A Feature distilling (FD) agent: Refine low-level individual features by distilling informative frames.

> A Relation-gating (RG) agent:

attend to group-relevant relations.

Adjust high-level semantic graph to

Input Activity

DIndividual Feature Extraction

 \succ Tracklests: tracked from person annotations in the middle frames. \geq Extract the individual spatiotemporal features (Xp) and the original interaction features (*Xe*).

DSemantic Relation Graph

> Node (person) attributes are initialized as individual spatiotemporal feature, edge attributes are initialized as original interaction feature, *u* represents global attribute (e.g., activity score) \succ The graph updated for *m* iterations during each forward pass.

RL-based agents

>Two agents adopting policy according to two Markov decision processes are proposed to progressively refine the graph. \succ The structure and decision process are in the next two sections.

Progressive Relation Learning for Group Activity Recognition Yuan He Shan Yu

Guyue Hu Bo Cui

Institute of Automation, Chinese Academy of Sciences

 $\boldsymbol{h}_{\boldsymbol{e}_{\boldsymbol{i}\boldsymbol{j}}} = \boldsymbol{h}_{\boldsymbol{e}_{\boldsymbol{i}\boldsymbol{j}}} \cdot g_{\boldsymbol{i}\boldsymbol{j}}$

(a) Illustration of the feature-distilling process

- Generate two types of discrete action for each selected frame: **"stay distilled"** indicating the frame is informative that the agent determines to keep it.
- **"shift to alternate"** indicating the agent determines to discard the frame and take in an alternate.

shifting introduced above, i.e.,

- $\succ S'_M$: binary mask of distilled
- frames (explicit local info).

> Contain the two components about trajectory ascending and class

 $r = r_{ascend} + r_{shift}$

5. Training

DAlternate Training

6. Experiment

DAccuracy Comparison Volleyball

Volleyball					CAD			
Methods	Backbone	OF	MCA	MPCA	Methods	Backbone	OF	MPCA(%)
HDTM [14]	AlexNet	Ν	81.9	82.9	HDTM [14]	AlexNet	Ν	89.6
SBGAR [19]	Inception-v3	Y	66.9	67.6	CERN-2 [25]	VGG16	Ν	88.3
CERN-2 [25]	VGG16	Ν	83.3	83.6	SBGAR [19]	Inception-v3	Y	89.9
SSU [2]	Inception-v3	Ν	89.9	-	PC-TDM [36]	AlexNet	Y	92.2
SRNN [4]	AlexNet	Ν	83.5	-	SPA+KD [31]	VGG16	Ν	92.5
PC-TDM [36]	AlexNet	Y	87.7	88.1	SPA+KD+OF [31]	VGG16	Y	95.7
stagNet [22]	VGG16	Ν	89.3	-	CRM [1]	I3D	Y	94.2
SPA+KD [31]	VGG16	Ν	89.3	89.0	Deceline [22]	VCC16	N	× ر ۲۹
SPA+KD+OF [31]	VGG16	Y	90.7	90.0	Dasenne [22]	VGG10	IN N	07.7
ARG [33]	VGG16	Ν	91.9	-	Ours-SKG	VGG16	N	89.4
CRM [1]	I3D	Y	93.0	-	Ours-SRG+R. A.	VGG16	N	90.0
Basalina [22]	VCC16	N	07.0		Ours-SRG+T. A.	VGG16	Ν	90.1
Baseline [22]	VGGIO	IN	07.9	-	Ours-SRG+FD	VGG16	Ν	91.1
Ours-SRG	VGG16	N	88.3	88.5	Ours-SRG+RG	VGG16	Ν	91.4
Ours-SRG+T. A.	VGG16	Ν	88.6	88.7	Ours-PRL	VGG16	Ν	93.8
Ours-SRG+R. A.	VGG16	Ν	88.7	89.0				
Ours-SRG+FD	VGG16	Ν	89.5	89.2	* MPCA is unavailable, MCA is listed instead.			
Ours-SRG+RG	VGG16	Ν	89.8	91.1				
Ours-PRL	VGG16	Ν	91.4	91.8				

> The three components SRG, RG Agent, and FD- Agent are effective. > Progressive relation learning is superior to attention variants.

UVisualization Result

Visualization of the refined SRGs. Color: importance degree of person. White lines: relations with top5/top3 (Volleyball/CAD) gate values. > Discover the subset of relations related to the "digging" person is the key to determine the activity "left pass".

VPR SEATTLE WASHINGTON

> Totally 9 separated training stages.

> At each stage, only one of the three components (SRG, FD Agent, RG Agent) is trained and the remaining two are frozen (or removed). > Individual features are extracted and saved to disk previously, thus

only need reloading in these stages.

> Two agents are both optimized with the classical A3C algorism.

> Predict "right winpoint" mainly based on two relation clusters, i.e., the "falling cluster" (left) and "cheering cluster" (right).

> Concentrate on the relations among the three moving persons to suppress the noisy relations caused by the "Waiting" person.

> Attend to the relations connected to the "Talking" person and weakens the relations among the three audiences.